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Abstract— Relay node placement, which aims to connect pre-
deployed sensor nodes to base stations, is essential in minimizing
the costs of wireless sensor networks. In this paper, we for-
mulate the new Node-Weighted Partial Terminal Steiner Tree
Problem (NWPTSTP) for minimum-cost relay node placement in
two-tiered wireless sensor networks. The objective is to minimize
the sum of heterogeneous production and placement costs of relay
nodes and the sum of outage probabilities of transmission routes
in a routing tree simultaneously. This extends the previous work
that considers the costs of relay nodes to be homogeneous. After
formulating NWPTSTP for this purpose, we prove that it can be
transformed to the existing node-weighted Steiner tree problem.
Subsequently, we conduct some theoretical analyses on the
emerging Physarum-inspired algorithms to reveal their potential
of computing Steiner trees. Based on these analyses, we propose
a new Physarum-inspired algorithm for solving NWPTSTP.
We conduct computational trials to show that: 1) in comparison
to a state-of-the-art approximation algorithm for solving the
node-weighted Steiner tree problem, our Physarum-inspired algo-
rithm can produce better solutions in a smaller amount of time;
and 2) in comparison to two state-of-the-art relay node placement
algorithms, our Physarum-inspired algorithm can design wireless
sensor networks with 25% lower relay cost and similar quality
of service (specifically, 5% shorter network lifetime, 2% longer
delay, and 0% loss of goodput). This indicates the usefulness of
our Physarum-inspired algorithm for minimum-cost relay node
placement in budget-limited scenarios.

Index Terms— Physarum polycephalum, Steiner tree problem,
nature-inspired algorithm, Internet of Things.
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I. INTRODUCTION

W IRELESS Sensor Networks (WSNs), which can be
considered as “eyes and ears” of the emerging Internet

of Things, consist of spatially distributed autonomous devices
using sensors to monitor environmental conditions. These
sensors are generally not powerful or energy efficient enough
for long distance transmission, and may easily break down
and leave the network disconnected in harsh environments
(e.g. [1]). Thus, relay nodes that are energy sufficient and can
transmit data between devices are often deployed to reduce
the energy consumption of sensors or to reconnect sensors to
base stations. Given that relay nodes are expensive; and their
locations determine the network topology and operation, relay
node placement is essential in minimizing the costs of WSNs,
while enhancing the Quality of Service (QoS).

Based on the routing topology, relay node placement can
be classified into two groups: single-tiered and two-tiered.
Both sensor and relay nodes can relay data in single-tiered
relay node placement, while only relay nodes can do this
in the two-tiered one. Furthermore, based on the deployment
locations, relay node placement can be classified differently
into two groups: constrained and unconstrained. Relay nodes
can only be placed at pre-determined candidate locations in
constrained relay node placement, while they can be placed
anywhere in the unconstrained one. Since two-tiered topology
is more energy efficient; and constrained relay node placement
permits the capture of possible geographical constraints in
reality [2] (e.g. inaccessible private properties), we focus on
two-tiered constrained relay node placement in this paper.

The two-tiered constrained relay node placement problem
was first studied by Yang et al. [3]. Assuming that the costs of
relay nodes are homogeneous, their objective was to place a
minimum number of relay nodes to achieve the network con-
nectivity and survivability. A lot of work has been done based
on their model (e.g. [4], [5]). Most recently, Bagaa et al. [6]
extended their model by minimizing not only the number
of relay nodes but also the sum of outage probabilities of
transmission routes in a routing tree. Bagaa et al. showed
that, by doing this, they can reduce the costs of WSNs, while
enhancing the QoS.

Nevertheless, the previous work above may not be cost-
aware enough for minimum-cost relay node placement, given
that an intuitive fact is ignored: there may be different types of
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Fig. 1. An instance of placing relay nodes (purple) to connect a sensor node
(green) with a base station (orange). (a) shows the instance, where the numbers
represent the costs of relay nodes and the outage probabilities of transmission
routes. (b)-(d) show three solutions (red). Yang et al. [3] may find Solution 1
for placing a minimum number of relay nodes. Bagaa et al. [6] finds Solution 2
for placing a minimum number of relay nodes, while minimizing the sum of
outage probabilities of transmission routes in a routing tree. We find Solution 3
for minimizing the sum of heterogeneous costs of relay nodes and the sum
of outage probabilities of transmission routes in a routing tree simultaneously
(the cost of Solution 3, i.e., 0.3× 2 + 0.1× 3, is the minimum).

relay nodes with different production costs, and the placement
costs of the same type of relay nodes may vary between
locations. For example, to monitor the vibration of a bridge
using wireless sensors, we may need to place different types
of relay nodes above and below the water, and the workers
may charge different prices for placing them. We consider
the costs of relay nodes to be the sums of their production
and placement costs. Ignoring the heterogeneity of these costs
greatly limits the applicability of the previous work above for
designing WSNs with sufficiently low costs. Therefore, more
cost-aware models are required for minimum-cost relay node
placement in reality.

In this paper, we address this issue by formulating and
solving the new Node-Weighted Partial Terminal Steiner Tree
Problem (NWPTSTP). Given a connected undirected graph
with nonnegative node weights and edge costs, NWPTSTP
asks for a tree such that 1) compulsory vertices are connected
by this tree; 2) some special compulsory vertices are leaves
of this tree; and 3) the sum of node weights and edge costs in
this tree is minimized. Since base stations and sensor nodes
should be connected by a routing tree; and sensor nodes cannot
relay data and thus should be leaves of a routing tree, we can
solve NWPTSTP to place relay nodes by 1) using compulsory
vertices to represent base stations and sensor nodes; 2) using
special compulsory vertices to represent sensor nodes; 3) using
non-compulsory vertices with different node weights to repre-
sent relay nodes with different costs; and 4) using edges with
different costs to represent transmission routes with different
outage probabilities. Our approach extends the previous ones
by minimizing the sum of heterogeneous costs of relay nodes
and the sum of outage probabilities of transmission routes in
a routing tree simultaneously (e.g. Figure 1).

It is hard to solve NWPTSTP due to the NP-completeness.
Like other Steiner tree problems (e.g. [7]), exact and non-exact
algorithms are used in different scenarios. Exact algorithms

Fig. 2. Photograph of Physarum polycephalum (provided by Prof. Toshiyuki
Nakagaki in the Hokkaido University, Japan).

can produce optimal solutions, but have exponential time
complexities. Moreover, exact algorithms generally demand
a lot of computational resources that are often not avail-
able. In comparison, non-exact algorithms cannot guarantee
optimality, but often have polynomial time complexities, and
generally demand much lower computational resources. Since
WSNs may be large and computational resources may be
limited, we focus on non-exact algorithms in this paper.

The Physarum-inspired Algorithms (PAs) are non-exact
algorithms that are promoted by the research on Physarum
polycephalum (see Figure 2), which is a slime mold that has
exhibited many intelligent behaviors, such as solving mazes
and building efficient networks (e.g. [8]–[10]; and a TED talk
in 2014 [11]). Some biological experiments have shown that
the tubular structures of Physarum polycephalum are often
analogous to those of Steiner trees (e.g. [12]), which indicates
that PAs may have the potential of computing Steiner trees
(e.g. [13]–[15]). To the best of our knowledge, no work has
been done to reveal this potential from a theoretical perspective
to date [16]. In this paper, we first reveal this potential from
a theoretical perspective, and then exploit this potential by
proposing a new PA for solving NWPTSTP.

In summary, our major contributions are listed as follows:
• We formulate NWPTSTP for minimum-cost relay node

placement in two-tiered WSNs. The objective is to mini-
mize the sum of heterogeneous costs of relay nodes and
the sum of outage probabilities of transmission routes in
a routing tree simultaneously.

• We conduct some theoretical analyses on the solvability
of NWPTSTP, which is equivalent to the feasibility of
two-tiered WSNs for a given set of devices. We further
prove that NWPTSTP can be transformed to the Node-
Weighted Steiner Tree Problem (NWSTP) [17].

• We conduct some theoretical analyses on PAs to reveal
their potential of computing Steiner trees.

• We propose a new and hybrid PA to solve NWPTSTP by
incorporating Steiner tree techniques into the Physarum-
inspired optimization process.

Ultimately, we compare our PA with the state-of-the-art
Steiner tree and relay node placement algorithms to demon-
strate its usefulness for designing cheap WSNs with a high
QoS in budget-limited scenarios.

II. RELATED WORK

A. Relay Node Placement in Wireless Sensor Networks

The traditional relay node placement approaches are uncon-
strained, i.e., relay nodes can be placed anywhere in a given
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geometric space (e.g. [18]). These approaches do not permit
the capture of possible geographical constraints, and thus
may not be applicable in some cases. The recently developed
constrained relay node placement approaches can meet this
challenge. Misra et al. [2] first studied the single-tiered con-
strained relay node placement problem, while Yang et al. [3]
first studied the two-tiered one. Both of them placed a
minimum number of relay nodes to achieve the network
connectivity and survivability. Later, Zheng et al. [19] studied
the two-tiered constrained relay node placement problem in
energy-harvesting WSNs. They placed a minimum number of
relay nodes that are powered by green energy, and optimized
resource allocation to achieve the network connectivity and a
high QoS. Furthermore, Misra et al. [20] studied the single-
tiered constrained relay node placement problem in energy-
harvesting WSNs. They placed a minimum number of relay
nodes to achieve the network connectivity and survivability,
while ensuring that the deployed relay nodes harvest a large
amount of ambient energy. Kimençe and Bekmezci (2014) [21]
extended the work on single-tiered constrained relay node
placement by weighting all the deployment locations. They
minimized the sum of such weights of all the deployed
relay nodes. Most recently, Liu et al. [22] and Djenouri and
Bagaa (2017) [23] further studied the single-tiered constrained
relay node placement problem: Liu et al. placed a limited
number of relay nodes to maximize the network lifetime; and
Djenouri et al. placed a minimum number of relay nodes to
help energy-rich sensor nodes relay data. Chelli et al. [4],
Bagaa et al. [6], and Yuan et al. (2017) [5] further studied
the two-tiered constrained relay node placement problem:
Chelli et al. placed a minimum number of relay nodes
to achieve the network connectivity; Bagaa et al. placed a
minimum number of relay nodes to achieve the network
connectivity, while minimizing the sum of outage probabilities
of transmission routes in a routing tree; and Yuan et al. placed
a limited number of relay nodes to maximize the network
lifetime. Our work extends the previous work by minimizing
the sum of heterogeneous costs of relay nodes and the sum
of outage probabilities of transmission routes in a routing tree
simultaneously.

B. Steiner Tree Problems in Graphs

Given an undirected graph with positive edge costs, the clas-
sical Steiner tree problem in graphs [24] is about finding the
minimum-cost tree to connect compulsory vertices together.
Many more complex Steiner tree problems in graphs have been
developed based on it, including the Partial Terminal Steiner
Tree Problem (PTSTP) [25], where some special compulsory
vertices must be leaves of Steiner trees. Since sensor nodes
cannot relay data and thus are leaves of a routing tree, PTSTP
is in our interest. There is no node weight in PTSTP to repre-
sent the heterogeneous costs of relay nodes. This motivates us
to later formulate, analyze, and solve NWPTSTP. On the other
hand, node weights have already been introduced into some
other Steiner tree problems in graphs, including Klein and
Ravi’s [17] Node-Weighted Steiner Tree Problem (NWSTP),
which aims to minimize the sum of nonnegative node weights
and edge costs in Steiner trees.

Klein and Ravi (1995) [17] proposed the first approximation
algorithm for solving this problem, and it has an approxi-
mation guarantee of 2 ln|T |, where |T | is the number of
compulsory vertices. This is close to the best known lower
bound of the approximation guarantee (1 − o(1))ln|T | [26].
Guha and Khuller (1999) [26] later improved Klein and Ravi’s
algorithm, and the improvement has an approximation guaran-
tee of (1.35+ε)ln|T |, for any constant ε > 0. Both Klein and
Ravi’s algorithm and Guha and Khuller’s improvement are not
fast in practice, as we need to repeatedly find many minimum
weight matchings in each iteration [26]. Consequently, Guha
and Khuller [26] further proposed a simple greedy algorithm
that has an approximation guarantee of 1.6103ln|T |. To our
knowledge, this algorithm can be considered as a state-of-the-
art one for solving this problem, since the more recent work
focuses on solving this problem in special graphs, such as
unit disk graphs (2009) [27] and planar graphs (2014) [28].
In our application, |T | represents the number of base stations
and sensor nodes, which means that |T | may be large in
some cases. As a result, the approximation guarantees above,
such as 1.6103ln|T |, although close to the best known lower
bound, may be too large to guarantee a high solution quality.
Therefore, it is still worth exploring new algorithms that can
produce high-quality solutions. The emerging PAs may be
such algorithms (e.g. [13]–[15]). To the best of our knowl-
edge, no work has been done to reveal their potential of
computing Steiner trees from a theoretical perspective [16].
This motivates us to later conduct some theoretical analyses
on PAs. Based on these analyses, we propose a new PA that
can produce high-quality solutions for our application.

III. PROBLEM FORMULATION

We consider a WSN consisting of three types of devices:
base stations (B), sensor nodes (S), and relay nodes (R). Base
stations and sensor nodes are pre-deployed and stationary,
while relay nodes are fixed at pre-determined candidate loca-
tions. We use rB , rS and rR to denote the transmission ranges
of base stations, sensor nodes and relay nodes respectively.
Like the previous work [2], [3], we assume that there is only
one relay node at each candidate location; rR > rS > 0; and
rB is much larger than rR such that there is a transmission
route between each pair of base stations. The transmission
routes between devices have outage probabilities in practice.
Like the previous work [6], we consider such outage proba-
bilities for enhancing the QoS of WSNs.

We are interested in the two-tiered topology, where sensor
nodes cannot relay data. This means that there is no transmis-
sion route between sensor nodes. We define the Cost-aware
Communication Graph (CCG) as follows, where d(i, j) is the
Euclidean distance between devices i, j, and ri, rj are the
transmission ranges of devices i, j respectively.

Definition 1 (The Cost-aware Communication Graph):
The Cost-aware Communication Graph CCG(V,E,w, c) is
a connected undirected graph, where V is the set of vertices
such that V = B∪S∪R; E is the set of edges such that edge
(i, j) ∈ E if |{i, j}∩S| < 2 and d(i, j) ≤ min{ri, rj}; w is a
function which maps each vertex i ∈ R to a nonnegative value
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w(i) that equals the sum of its production and placement
costs; and c is a function which maps each edge e ∈ E to a
nonnegative value c(e) that equals its outage probability.

Given that relay nodes are fixed at pre-determined candidate
locations, it may be easy to quantify their production and
placement costs in practice. For example, we can consider
their production costs as their selling prices on the market,
and their placement costs as the prices of hiring people to
install them at the pre-determined candidate locations. On the
other hand, the outage probabilities of transmission routes can
be calculated using the model developed by Bagaa et al. [6].
We assume that the outage probabilities of transmission routes
between base stations are zero, which means that a packet
received by a base station is considered received by all the base
stations. Consequently, it is sufficient for each sensor node to
connect at least one base station, and it is not necessary to
make the designed WSN connected. Nevertheless, without loss
of generality, we assume that the designed WSN is always con-
nected, as we can easily make a disconnected WSN connected
using the zero-outage-probability transmission routes between
base stations. For the same reason, we also assume that the
designed WSN contains all the base stations; and there is a
routing tree that spans all the base stations and sensor nodes.

We focus on scenarios where sensor nodes are often far
away from base stations, which means that there are often
a large number of relay nodes between sensor nodes and
base stations. It is preferable to minimize the sum of costs
of these relay nodes for designing cheap WSNs. We consider
the costs of relay nodes to be the sums of their production and
placement costs. We assume that the outage probabilities of
transmission routes are small values. In this case, the outage
probability of a routing path between a sensor node and a base
station can be approximated as the sum of outage probabilities
of transmission routes in this path, i.e., 1−∏

e∈EP
(1−c(e)) ≈∑

e∈EP
c(e), where EP is the set of transmission routes in this

path. Therefore, by minimizing the sum of costs of relay nodes
and the sum of outage probabilities of transmission routes in a
routing tree that contains a routing path between each sensor
node and a base station, we can approximately find low-cost
relay nodes that enable low-outage-probability routing paths
between sensor nodes and base stations, and thus design cheap
WSNs with a high QoS. Specifically, we define the Minimum-
Cost Relay Node Placement Problem as follows.

Problem 1 (The Minimum-Cost Relay Node Placement
Problem): Given a CCG(V,E,w, c) such that V = B∪S∪R,
the Minimum-Cost Relay Node Placement Problem is to deploy
some relay nodes R′ ∈ R in such a way that: 1) there
is a routing path between each sensor node and a base
station in a routing tree CCG′(V ′, E′), V ′ = B ∪ S ∪ R′,
E′ ⊆ E, and no sensor node is in the middle of this path; and
2)

∑
v∈R′ w(v) +

∑
e∈E′ c(e) is minimized.

The first condition above guarantees that CCG′ is a feasible
routing tree, while the second condition above guarantees
that the sum of costs of relay nodes and the sum of outage
probabilities of transmission routes in the routing tree are
minimized simultaneously. Since sensor nodes cannot relay
data, all the sensor nodes are leaves of the routing tree,
otherwise we can remove an adjacent edge of a non-leaf sensor

node to reduce
∑

e∈E′ c(e), while still meeting the routing
and network connectivity requirements, as no route between a
sensor node and a base station is jeopardized by this removal;
and all the base stations are connected to each other through
zero-outage-probability transmission routes. To find CCG′,
we formulate the new Node-Weighted Partial Terminal Steiner
Tree Problem (NWPTSTP) as follows.

Problem 2 (The Node-Weighted Partial Terminal Steiner
Tree Problem): Let G(V,E, T, TL, w, c) be a connected undi-
rected graph, where V is the set of vertices, E is the set of
edges, T is a subset of V that we refer to as compulsory
vertices, TL is a subset of T that we refer to as compulsory
leaf vertices, w is a function which maps each vertex in V
to a nonnegative value that we refer to as node weight, and
c is a function which maps each edge in E to a nonnegative
value that we refer to as edge cost. The purpose is to find
a tree G′(V ′, E′), TL ⊆ T ⊆ V ′ ⊆ V, E′ ⊆ E with the
minimum net-cost c(G′) =

∑
v∈V ′ w(v) +

∑
e∈E′ c(e), and

all the compulsory leaf vertices are leaves of this tree.
G′ becomes CCG′ when V = B ∪ S ∪ R; T = B ∪ S;

TL = S. The leaf constraints of TL guarantee that G′ is a
feasible routing tree, i.e., there is a routing path between each
sensor node and a base station in G′, and no sensor node is in
the middle of this path. Minimizing

∑
v∈V ′ w(v)+

∑
e∈E′ c(e)

further guarantees that G′ has a low cost, and enables a high
QoS, as discussed above. Our relay node placement approach
is more cost-aware than the existing ones in that we consider
the heterogeneous costs of relay nodes (e.g. Figure 1). Since
the outage probabilities of transmission routes are unit-less
values between 0 and 1, it may be preferable to normalize
the costs of relay nodes to unit-less values between 0 and 1,
and then introduce a regulating weight into the objective
function, i.e., to minimize α

∑
v∈V ′ wn(v) +

∑
e∈E′ c(e),

where α is a positive constant, and wn is the normalized
node weight function. We can do this by solving NWPTSTP
in G(V,E, T, TL, αwn, c). A large α weights the costs of
relay nodes more than the outage probabilities of transmission
routes. Therefore, a large α helps us to minimize the costs of
WSNs, and a small α helps us to enhance the QoS of WSNs.
We will later show the trade-off via computational trials.

IV. SOME THEORETICAL ANALYSES ON NWPTSTP

In this section, we conduct some theoretical analyses on
NWPTSTP. We focus on connected undirected graphs. For the
sake of simplicity, we refer to a connected undirected graph
G as a graph G throughout the following content.

A. The NP-Completeness

Here, we prove the NP-completeness of the decision version
of NWPTSTP: given a graph G and a nonnegative value k,
is these a solution G′ such that c(G′) ≤ k?

Theorem 1: The decision version of NWPTSTP is
NP-complete.

Proof: Since a given solution to NWPTSTP can be verified
in polynomial time, the decision version of NWPTSTP is in
NP. When TL = w = ∅ and c(e) ∈ R>0 | ∀e ∈ E, the decision
version of NWPTSTP is equivalent to the decision version
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Fig. 3. Two relay node placement examples: placing relay nodes (purple)
to connect sensor nodes (green) with a base station (orange). The red solid
lines and black dashed lines represent the used and unused transmission routes
respectively. In (a), a relay node is disconnected with the base station, as it
is far away from the other relay node, and the middle sensor node cannot
relay data; as a result, the left sensor node is disconnected. In (b), two relay
nodes are connected with the base station; as a result, all the sensor node are
connected.

of the classical Steiner tree problem in graphs [24], which is
among Karp’s original 21 NP-complete problems [29]. Hence,
this theorem holds. �

B. The Solvability of NWPTSTP

Two-tiered WSNs may not be available when there are not
enough relay nodes between sensor nodes and base stations
(e.g. Figure 3). The feasibility of two-tiered WSNs for a given
set of devices is equivalent to the solvability of NWPTSTP,
i.e., whether feasible solutions exist or not for a given graph.
Here, we conduct some theoretical analyses on this solvability.

Theorem 2: There is a feasible solution to NWPTSTP in
a graph G(V,E, T, TL, w, c) if and only if at least one of
the following four conditions is met: 1) |TL| = 0; 2) |T | =
|TL| = 1; 3) |T | = |TL| = 2, and (i, j) ∈ E for i, j ∈ TL;
4) there is a vertex i ∈ V \ TL such that i is connected with
every compulsory vertex j ∈ T in graph G \ (TL \ j).

Proof: Given that G is connected, there is a tree that
contains all the compulsory vertices, such as the Minimum
Spanning Tree of G. If condition 1 is met, then this tree
is a feasible solution. If condition 2 is met, then the single
vertex {i} for i ∈ TL is a feasible solution. If condition 3
is met, then the single edge {(i, j)} for i, j ∈ TL is a
feasible solution. If condition 4 is met, then there is a vertex
i ∈ V \ TL and a path P (i, j) for all j ∈ T such that no
compulsory leaf vertex is in the middle of this path, and a
spanning tree of ∪P (i, j)|∀j ∈ T is a feasible solution. Thus,
if at least one of the four conditions is met, then there is a
feasible solution. Subsequently, suppose that there is a feasible
solution, but none of the four conditions is met. Since the
first three conditions are not met, there are three possible
scenarios: 1) |T | = 2, |TL| = 1; 2) |T | = |TL| = 2, and
(i, j) /∈ E for i, j ∈ TL; and 3) |T | > 2, |TL| ≥ 1. Suppose
that Θ(V ′, E′) is a feasible solution. In each scenario, there is
a vertex i ∈ V ′ \ TL in Θ such that i is disconnected with a
compulsory vertex j ∈ T in Θ\(TL\j), which is not possible.
Therefore, if there is a feasible solution, then at least one of
the four conditions is met. Hence, this theorem holds. �

In our application, there is at least one base station,
i.e., |T \ TL| ≥ 1, and there is at least one sensor node,
i.e., |TL| ≥ 1. As a result, only the fourth condition in
Theorem 2 can be met. Since we need to check every i
(O(|V |)), every j (O(|T |)) and the connectivity of G\(TL\j)
(O(|V | + |E|) [30]), the time complexity of implementing

Theorem 2 to check the solvability of NWPTSTP for general
graphs is O(|T ||V |2 + |T ||V ||E|). It is slow to do this for
large graphs. Thus, we further prove that there is a faster way
to identify solvable CCGs for our application.

Theorem 3: Given a CCG(V,E, T, TL, w, c) such that
V = B ∪ S ∪ R; T = B ∪ S; TL = S, if CCG \ TL is
connected, then there is a feasible solution to NWPTSTP.

Proof: Given that CCG is connected and edge (i, j) /∈ E
for i, j ∈ TL, if CCG \ TL is connected, then there is
a vertex i ∈ V \ TL such that i is connected with every
compulsory vertex j ∈ T in CCG \ (TL \ j). As a result,
the fourth condition in Theorem 2 is always met. This theorem
holds. �

Since we need to check the connectivity of CCG \ TL,
the time complexity of implementing Theorem 3 to identify
solvable CCGs is O(|V | + |E|). Therefore, it is fast to
implement Theorem 3 to identify solvable CCGs for our
application. We will do this in our later computational trials for
generating a large number of solvable relay node placement
instances.

C. Removing the Leaf Constraints in NWPTSTP

Here, we prove that the leaf constraints of TL in NWPTSTP
can be removed by updating edge costs. First, we show that
the leaf constraints increase solution costs via the following
theorem, where we refer to the optimal solution to NWPTSTP
as Terminal Steiner Minimum Tree (TSMT).

Theorem 4: If there are feasible solutions to NWPTSTP in
a graph G(V,E, T, TL, w, c), then c(Θopt) ≥ c(Θ′

opt), where
Θopt and Θ′

opt are the TSMTs in G(V,E, T, TL, w, c) and
G′(V,E, T, ∅, w, c) respectively.

Given that a feasible solution to NWPTSTP is also a feasible
solution to NWPTSTP (TL = ∅), this theorem can be easily
proven. It is used in the proof of the following theorem that
proves that TL can be removed by updating edge costs.

Theorem 5: If there are feasible solutions to NWPTSTP in
graphs G(V,E, T, TL, w, c) and G′(V,E, T, ∅, w, c′) such that
c′(i, j) = c(i, j)+ τM | ∀(i, j) ∈ E, where τ = |TL∩{i, j}|,
M ≥ ∑

v∈V w(v)+
∑

e∈E c(e), then the TSMTs in G and G′

share the same sets of vertices and edges.
Proof: Suppose that Θopt(Vopt, Eopt), Θ′

opt(V
′
opt, E

′
opt),

and Θ′′
opt(V

′′
opt, E

′′
opt) are the TSMTs in G(V,E, T, TL, w, c),

G′(V,E, T, ∅, w, c′), and G′′(V,E, T, TL, w, c
′) respectively;

and there is a compulsory leaf vertex i ∈ TL such that its
degree δ(i) = x > 1 in Θ′

opt. Then, c(Θ′
opt) ≥ (|TL| +

x − 1)M +
∑

e∈E′
opt

c(e) +
∑

v∈V ′
opt

w(v) > c(Θ′′
opt) =

|TL|M+
∑

e∈E′′
opt

c(e)+
∑

v∈V ′′
opt

w(v), which is not possible
(by Theorem 4). Therefore, δ(i) = 1, i.e., Θ′

opt is also
a feasible solution to NWPTSTP in G′′. Since c(Θ′

opt) ≤
c(Θ′′

opt) (by Theorem 4), c(Θ′
opt) = c(Θ′′

opt). Therefore, every
tree that corresponds to Θ′

opt also corresponds to Θ′′
opt, vice

versa. Moreover, every tree that corresponds to a feasible
solution to NWPTSTP in G also corresponds to a feasible
solution to NWPTSTP in G′′, vice versa. Given that c′(i, j) =
c(i, j) + τM , these feasible solutions differ in cost by the
constant |TL|M . Thus, c(Θ′′

opt) = c(Θopt) + |TL|M , and
every tree that corresponds to Θ′′

opt also corresponds to Θopt,

Authorized licensed use limited to: Nanyang Technological University. Downloaded on April 18,2020 at 01:59:04 UTC from IEEE Xplore.  Restrictions apply. 



686 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 2, APRIL 2020

vice versa. As a result, every tree that corresponds to Θ′
opt

also corresponds to Θopt, vice versa. Hence, this theorem
holds. �

This theorem shows that TL can be removed. NWPTSTP
(TL = ∅) is equivalent to Klein and Ravi’s NWSTP [17].
We will compare a state-of-the-art approximation algorithm
for solving NWSTP in our later computational trials.

V. SOME THEORETICAL ANALYSES ON PAS

Physarum-inspired Algorithms (PAs) have the potential of
computing Steiner trees. However, to the best of our knowl-
edge, no work has been done to reveal this potential from
a theoretical perspective to date. In this section, we first
introduce Physarum Solver (PS) [31], which is a well-known
PA for solving the shortest path problem, i.e., finding the
shortest path between two terminals in an undirected graph. PS
is the basis of most PAs (e.g. [13]–[15]). After introducing PS,
we conduct some theoretical analyses on these PAs to reveal
their potential of computing Steiner trees.

In a biological experiment [8], Physarum polycephalum
demonstrated the ability of finding the shortest path between
two agar blocks in a maze. This ability is attributed to an
underlying physiological mechanism: the tube of Physarum
polycephalum thickens as the protoplasmic (or nutritional) flux
through it increases. PS is inspired by this mechanism.

In PS, the graph is considered as a network with a value
associated with each edge modeling the protoplasmic flux in
this edge. The two terminals in the shortest path problem
represent two agar blocks containing nutrient, which are food
for Physarum polycephalum.

Like Physarum polycephalum, PS finds the shortest path
between these two terminals by maximizing the protoplasmic
flux in this path. One terminal is called the source node, and
the other terminal is called the sink node. The protoplasmic
flux flows into the graph from the source node and out of
the graph from the sink node (note that, for the real Physarum
polycephalum, this flux does not flow out of the body; instead,
it periodically reverses the flow direction between two ter-
minals as a result of shuttle streaming [32], [33]). There is
pressure at each vertex, and the quantity of flux in each edge
is proportional to the pressure difference between two ends of
this edge. Specifically, the flux Qij in edge (i, j) is given by
the following Hagen-Poiseuille equation.

Qij =
Dij

cij
(pi − pj) (1)

Dij =
πr4ij
8ξ

(2)

where Dij is the edge conductivity, cij is the edge length/cost,
i.e., c(i, j), pi and pj are pressures at vertices i and j, rij is
the edge radius, and ξ is the viscosity coefficient. Equation (2)
shows that the conductivity increases with the tube thickness,
i.e., rij . Thus, the change of tube thickness can be described
by the conductivity update equation as follows.

d

dt
Dij = η|Qij | − μDij (3)

Fig. 4. Two Physarum optimization examples. The flux flows from the
source node (green) to the sink node (orange), possibly through the other
nodes (purple). In (a), the quantity of flux in (red) edges (i, j) and (k, l) is
Q, while that in the other (black) edges is Q/n, where n is the number of
disjoint paths between i, k or l, j, and n > 1. In (b), the quantities of flux in
edges (i, j), (i, k), (j, k) are Qij , Qik, Qjk respectively.

where η and μ are two positive constants. The conductivity
update equation implies that conductivities tend to increase in
edges with large flux. Therefore, PS exploits the physiological
mechanism that the tube of Physarum polycephalum thickens
as the protoplasmic flux through it increases.

To calculate the flux and update edge conductivities, we first
need to calculate the pressures. By considering the conserva-
tion law of flux at each vertex, the pressures can be calculated
using the network Poisson equation below.

∑

i∈V (j)

Dij

cij
(pi − pj) =

⎧
⎪⎨
⎪⎩

−I0, j = source

I0, j = sink

0, otherwise

(4)

where V (j) is the set of vertices linked to vertex j, I0 is the
quantity of flux flowing into the source node and out of the
sink node.

Let the pressure at the sink node be 0, and give each edge
conductivity an initial value, then the other pressures can be
calculated using Equation (4). Subsequently, the flux in each
edge can be calculated using Equation (1), and the conductivity
of each edge can be updated using Equation (3). Clearly,
the pressures (excluding the pressure at the sink node) and the
fluxes will also change after the update of edge conductivities.
Use ε to signify the threshold value of edge conductivity.
Edges with conductivities smaller than ε will be cut from
the network. Ultimately, if there is a unique shortest path
between the source and sink nodes, then this path can be
found by iteratively updating edge conductivities and cutting
edges [34]. Most existing PAs are based on PS. We conduct
some theoretical analyses on them to reveal their potential of
computing Steiner trees as follows.

First, we observe that isolated subgraphs with no
source or sink node inside may exist after cutting edges. For
example, in Figure 4a, if η = 1; μ = 1; and Q > ε >
Q/n, then all the edges except (i, j) and (k, l) will be cut,
and (k, l) becomes such an isolated subgraph. Suppose that
GA, GB are two connected subgraphs after cutting edges in
an iteration, and they are isolated from each other. Without
loss of generality, we assume that both the source and sink
nodes are in GA. Then, the network Poisson equation in the
next iteration is

[
A 0
0 B

] [
PA

PB

]
=

[
C
0

]
(5)
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where A,B,C are non-zero sub-matrices, and PA, PB are the
sets of pressures of vertices in GA, GB . Clearly, PB = 0.
Consequently, all the fluxes in GB are 0 in the next iteration.
Suppose (k, l) is an edge in GB . Then, its conductivity in the
next iteration is (1− μ)D0

kl, where μ is in Equation (3), D0
kl

is its conductivity in this iteration. If μ = 1, then edge (k, l)
will be cut. Thus, the following conclusion can be made.

Conclusion 1: Isolated subgraphs with no source or sink
node inside may exist in an iteration of PAs. If μ = 1, then
they will disappear in the next iteration.

This conclusion indicates the preference of setting μ = 1,
which has been observed in the previous computational trials
of employing PAs to compute shortest paths [35].

We next analyze the fluxes between the source and sink
nodes. Suppose that there is a triangular graph with three ver-
tices i, j, k (see Figure 4b), where vertices i, k are respectively
the source and sink nodes. We have the following equation.

Qij =
Dij

cij
(pi − pj) = Qjk =

Djk

cjk
(pj − pk) (6)

We define

Aij :
Dij

cij
(7)

Aij ⊗Ajk :
AijAjk

Aij +Ajk
=

DijDjk

cijDjk + cjkDij
(8)

The flux in path {(i, j), (j, k)} is

Q = Qij = Qjk =
Aij +Ajk

Aij +Ajk
Q

=
1

Aij +Ajk
(AjkQij +AijQjk)

=
1

Aij +Ajk
[AijAjk(pi − pj) +AijAjk(pj − pk)]

=
AijAjk

Aij +Ajk
(pi − pk)

= Aij ⊗Ajk(pi − pk) (9)

The flux in path {(i, k)} is

Qik =
Dik

cik
(pi − pk) (10)

If

Aij ⊗Ajk =
DijDjk

cijDjk + cjkDij
=

Dik

cik
(11)

then the fluxes in these two path are equal. If all the initial
edge conductivities are equal and cij + cjk = cik , i.e. both
of these two paths are the shortest paths, then the fluxes in
them will be equal after each iteration, and both of them will
survive to the end. In a more general case where m disjoint
paths between i, k exist, we assume that the vertices on path
x are i, v1, v2 · · · , vn, k. It can be seen from Equation (9) that
the flux in path x is

QPx = Aiv1 ⊗Av1v2 ⊗ · · · ⊗Avnk(pi − pk) (12)

If all the edge conductivities on this path are equal, then

QPx =
DPx

cPx

(pi − pk) (13)

where DPx is the edge conductivity on this path, cPx is the
total cost of this path. If

DP1

cP1

=
DP2

cP2

= · · · = DPm

cPm

(14)

then the fluxes in these paths will always be equal. Con-
sequently, all these paths will survive to the end. Thus,
the following conclusion can be made.

Conclusion 2: The solutions of PAs may not be trees.
This conclusion indicates that, to compute Steiner trees,

additional techniques are required to guarantee that the solu-
tions of PAs are always trees. We will use a Minimum
Spanning Tree technique in our later proposed PA to guarantee
this.

Subsequently, we analyze the ability of PAs of computing
shortest paths in an undirected graph. Bonifaci et al. [34] have
provided the rigorous proof for this ability under the condition
that η = 1 and μ = 1 in Equation (3). Here, we prove it from
a more general perspective in that η is not constrained to 1,
and we indicate for the first time that multiple shortest paths
may survive at the same time in PAs.

Suppose that there are two disjoint paths between the source
node i and sink node k (note that, since a sub-path of a shortest
path is itself a shortest path, the conclusions below also hold
true for joint paths); their edge conductivities and costs are
Dik1, Dik2, cik1, cik2 respectively. Since pk = 0, we have

Q1
ik1 =

D1
ik1

cik1
p1i (15)

Q1
ik2 =

D1
ik2

cik2
p1i (16)

Q1
ik1

Q1
ik2

=
D1

ik1

D1
ik2

· cik2
cik1

(17)

where Q1
ik1, Q

1
ik2, D

1
ik1, D

1
ik2 are respectively the fluxes and

edge conductivities of paths 1, 2 in the first iteration (the
superscripts on Q and D correspond to the iteration number),
p1i is the pressure at the source node i in the first iteration.
Suppose that μ = 1 in Equation (3). Since Qik > 0, we have

D2
ik1 = (1 +

ηp1i
cik1

− μ)D1
ik1 =

ηp1i
cik1

D1
ik1 (18)

D2
ik2 = (1 +

ηp1i
cik2

− μ)D1
ik2 =

ηp1i
cik2

D1
ik2 (19)

Q2
ik1 =

D2
ik1

cik1
p2i =

ηD1
ik1

(cik1)2
p1i p

2
i (20)

Q2
ik2 =

D2
ik2

cik2
p2i =

ηD1
ik2

(cik2)2
p1i p

2
i (21)

Q2
ik1

Q2
ik2

=
D1

ik1

D1
ik2

· (cik2
cik1

)2 (22)

Similarly, we conclude that in general

Qm
ik1

Qm
ik2

=
D1

ik1

D1
ik2

· (cik2
cik1

)m (23)

If there are multiple paths between i, k, then the fluxes in paths
x, y in the mth iteration meet the following condition.

Qm
ikx

Qm
iky

=
D1

ikx

D1
iky

· (ciky
cikx

)m (24)
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where Qm
ikx, Q

m
iky are the fluxes of paths x, y in the mth

iteration, cikx, ciky are the costs of paths x, y. If cikx < ciky
for any path y (y �= x), then

lim
m→∞

Qm
ikx

Qm
iky

= ∞ (25)

which means that the shortest path x will survive to the
end, and all the other paths will be cut. This proves that
PAs can compute shortest paths. However, if cikx = ciky ,
then

lim
m→∞

Qm
ikx

Qm
iky

=
D1

ikx

D1
iky

(26)

which means that the ratio of their fluxes will always equal
that of their initial edge conductivities. Hence, multiple short-
est paths may survive at the same time in PAs. Therefore,
the following conclusion can be made.

Conclusion 3: PAs can find the shortest path, and may find
multiple shortest paths at the same time.

This conclusion indicates that PAs may have the potential
to compute Steiner trees, as Steiner trees are short or low-
cost networks. Even though several PAs have already been
applied to challenge some Steiner tree problems in graphs
(e.g. [13]–[15]), there is currently no rigorous proof that
compulsory vertices will always be connected in the solutions
of PAs. The theorem below fills this gap by proving that
PAs can find a subgraph connecting multiple compulsory
vertices together by selecting them to be source and sink
nodes.

Theorem 6: Let G(V,E, c) be a connected undirected
graph with multiple source nodes and a single sink node.
Assume that every source node has an identical flux I0 > 0.
Consider a PA acting on G satisfying Equation (3), and with
a threshold value ε for cutting edges. If μ = 1 and ε ≤ 4ηI0

|V |2 ,
then the source and sink nodes will always remain connected
under the action of this PA.

Proof: Consider any partition of G into two subgraphs
GA and GB such that GA contains at least one source node
and GB contains the sink node and the other source node(s).
Let x be the number of source nodes in GA and let s be the
number of vertices in GA. We will show that the action of
a PA satisfying the conditions of this theorem cannot cut all
the edges directly connecting GA and GB . Let the number
of edges directly connecting GA and GB be y. We observe
that y ≤ s(|V | − s). The net flux from GA to GB is xI0.
There is an edge between GA and GB with flux at least
xI0
y ≥ xI0

s(|V |−s) . Let g(x, s) = xI0
s(|V |−s) . Clearly, the minimum

possible value of g occurs when x = 1 and s = |V |/2,
in which case g(x, s) = 4 I0

|V |2 . Let μ = 1 in Equation (3), then
Dij(k+1) = η|Qij(k)|, where k is the number of conductivity
update times, and k ≥ 1. If ε ≤ 4ηI0

|V |2 , then there is at least one
edge directly connecting GA and GB where the conductivity
is not smaller than the threshold value ε. Hence, this theorem
holds. �

We next show that PAs tend to find low-cost networks to
connect source and sink nodes together. Suppose that there are
n disjoint paths between a pair of vertices i, j, and the initial

edge conductivities on these paths are equal. We have

Q1
x =

D1
x

cx
(p1i − p1j) (27)

n∑

x=1

Q1
x = I1 (28)

where Q1
x, D

1
x are respectively the flux and edge conductivity

of path x in the first iteration, cx is the cost of path x, I1 is
the flux flowing from i to j in the first iteration. Then, the flux
in path x in the first iteration is

Q1
x =

D1
x

cx
D1

1

c1
+ · · ·+ D1

n

cn

I1

=
D1

x

∏
k �=x ck

D1
1

∏
k �=1 ck + · · ·+D1

n

∏
k �=n ck

I1

=

∏
k �=x ck∏

k �=1 ck + · · ·+∏
k �=n ck

I1 (29)

Suppose that μ = 1 in Equation (3). Then,

D2
x = ηQ1

x = η

∏
k �=x ck∏

k �=1 ck + · · ·+∏
k �=n ck

I1 (30)

Q2
x =

D2
x

cx
D2

1

c1
+· · ·+D2

n

cn

I2 =
(
∏

k �=x ck)
2

(
∏

k �=1 ck)
2+· · ·+(

∏
k �=n ck)2

I2

(31)

Similarly, we have

Qm
x =

(
∏

k �=x ck)
m

(
∏

k �=1 ck)
m + · · ·+ (

∏
k �=n ck)m

Im (32)

If cx = min(ck)k=1,··· ,n, which means that path x is the
shortest path between vertices i, j, then

∏

k �=x

ck = max(
∏

k �=y

ck)|y=1,··· ,n (33)

Hence,

lim
m→∞

Qm
x = Im (34)

lim
m→∞

Qm
k |k �=x = 0 (35)

Thus, PAs tend to find the shortest path between each pair of
vertices in the graph (notably, this result is different from that
in Equation (25) in that, here, we analyze the flux between
each pair of vertices, and we assume that all the initial edge
conductivities are equal). Consequently, by selecting multiple
compulsory vertices to be source and sink nodes, PAs tend to
find a low-cost network to connect them. Hence, the following
conclusion can be made.

Conclusion 4: PAs can find low-cost networks to connect
multiple compulsory vertices together.

This conclusion shows that PAs have the potential to com-
pute Steiner trees. Some PAs have already been applied to
solve various Steiner tree problems in graphs (e.g. [13]–[15]).
These PAs compute Steiner trees by iteratively calculating
pressures, updating edge conductivities, and cutting edges in

Authorized licensed use limited to: Nanyang Technological University. Downloaded on April 18,2020 at 01:59:04 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: PA FOR MINIMUM-COST RELAY NODE PLACEMENT IN WIRELESS SENSOR NETWORKS 689

Algorithm 1 The Proposed Physarum-Inspired Steiner Tree
Algorithm (PSTA)

Input: A solvable CCG(V,E, T, TL, w, c), a parameter K
Output: A feasible solution Θbest(VΘbest

, EΘbest
)

1: Update c using Theorem 5
2: Θbest(VΘbest

, EΘbest
) = MST (CCG(V,E, c))

3: for k = 1 : K do
4: Randomize pressures
5: Calculate fluxes using Equation (36)
6: Construct CCG′(V,E, c′) using Equation (38)
7: Update c′ using Theorem 5
8: Θ(VΘ, EΘ) = MST (CCG′(V,E, c′))
9: Prune non-compulsory leaves in Θ

10: Θ(VΘ, EΘ) = MST (Θ(VΘ, EΘ, c))
11: Prune non-compulsory leaves in Θ
12: if c(Θbest) > c(Θ) then
13: Θbest = Θ
14: end if
15: end for
16: Return Θbest(VΘbest

, EΘbest
)

the same way as PS. We observe that such iterations are
computationally too expensive for large graphs. Moreover,
the quality of their solutions may not be high enough either.
In the next section, we propose a hybrid PA to overcome these
weaknesses by incorporating Steiner tree techniques into the
Physarum-inspired optimization process.

VI. THE PROPOSED PA FOR SOLVING NWPTSTP

In this section, we propose the Physarum-inspired Steiner
Tree Algorithm (PSTA) for solving NWPTSTP. Suppose that
there is a solvable CCG(V,E, T, TL, w, c) identified using
Theorem 3. First, we update c using Theorem 5 (Step 1).
Then, we initialize the best produced solution Θbest to be the
Minimum Spanning Tree (MST) of CCG (Step 2). Given that
there is a spanning tree in CCG that meets the constraints
of TL; and c has been updated using Theorem 5, this initial
Θbest is a feasible solution. Subsequently, we produce better
solutions by iteratively pruning low-cost spanning trees in K
loops (Steps 3-15). The reason why we do not iteratively
update edge conductivities and delete edges to form a Steiner
tree like traditional PAs is that the solutions produced by doing
this may not be trees (see Conclusion 2).

In each loop, we associate each node with a random
pressure value (Step 4). The reason why we do not solve
the network Poisson equation, i.e., Equation (4), to calculate
pressures like traditional PAs is that it is computationally too
expensive to do this (specifically, the smallest time complexity
of matrix multiplication and inversion is O(|V |2.373) [36]).
After randomizing pressures, we modify the Hagen-Poiseuille
equation, i.e., Equation (1), to consider the existence of node
weights in NWPTSTP as follows.

Qij =
Dij

Cij
(pi − pj) (36)

Cij = c(i, j) + w(i) + w(j) (37)

where Dij is constant for all edges. The above equations
ensure that there are small fluxes in the adjacent edges of
non-compulsory vertices with large node weights. We use
Equation (36) to calculate fluxes in each edge (Step 5). To form
a low-cost spanning tree, we first construct a new graph
CCG′(V,E, c′) that has different edge costs with CCG as
follows (Step 6).

c′(i, j) =
1

|Qij |
(38)

By doing this, edges with large fluxes have small costs in
CCG′. Subsequently, we update c′ using Theorem 5 (Step 7),
and find the MST of CCG′: Θ (Step 8). Since the adjacent
edges of non-compulsory vertices with large node weights tend
to have small fluxes and large edge costs in CCG′, these
vertices are more likely to be leaves of Θ. Consequently,
we may easily remove these vertices from Θ by pruning
non-compulsory leaves (Step 9). Notably, Θ is not the MST
for c. Thus, we further update Θ to be the MST of the
pruned tree for c (Step 10), and then prune non-compulsory
leaves again (Step 11). Since a subtree in an MST is also an
MST [37], there is no need to find the MST of Θ anymore.
We use Θ to update Θbest (Steps 12-14). After K loops, PSTA
returns Θbest as the final solution (Step 16). PSTA has a time
complexity of O(K|E| + K|V |log|V |). The rigorous proof
of this time complexity is in the supplement. Since Θbest is
the MST of CCG when K = 0, there is no approximation
guarantee for PSTA. Nevertheless, we will later show that
PSTA can produce high-quality solutions in practice.

VII. COMPUTATIONAL ANALYSES

Here, we evaluate our methodology via computational tri-
als that are conducted on a personal computer (Intel Xeon
E5-1650 CPU). All the reported values have been averaged
over 300 trials and are associated with their 95% Confidence
Intervals. The codes and datasets are available at [38].

Algorithms: We implement four algorithms:
1) PSTA: It is our PA for solving NWPTSTP.
2) GKA (Guha and Khuller’s Algorithm) [26]: It is Guha

and Khuller’s 1.6103ln|T | approximation algorithm for solv-
ing NWSTP. It can solve NWPTSTP by removing the leaf
constraints via Theorem 5 (notably, GKA incorporates Klein
and Ravi’s method [17] of finding minimum-ratio spiders
to concatenate compulsory vertices, and it can be seen that
the large M values in Theorem 5 guarantees that the leaf
constraints are met in such concatenations).

3) RRPL [6]: It is a recently proposed relay node placement
algorithm. It aims to place a minimum number of relay nodes
to achieve the network connectivity, while minimizing the sum
of outage probabilities of transmission routes in a routing tree.

4) OSRP [4]: It is another recently proposed relay node
placement algorithm. It aims to place a minimum number of
relay nodes to achieve the network connectivity. Both RRPL
and OSRP incorporate an approximation algorithm for solving
the classical Steiner tree problem in graphs [24]. The one
incorporated into RRPL is Kou’s algorithm [39], while the one
incorporated into OSRP has not been specified. Here, we also
incorporate Kou’s algorithm into OSRP.
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Parameters: We vary six parameters:
1) α: It is the regulating weight between the costs of

relay nodes and the outage probabilities of transmission routes
(details in Section III).

2) |B|: It is the number of pre-deployed base stations.
3) |S|: It is the number of pre-deployed sensor nodes.
4) |R|: It is the number of candidate relay nodes.
5) γth: It is the receiver sensitivity threshold. The transmis-

sion ranges of devices decrease with γth (details in [6]).
6) Mr: It is the maximum number of retransmissions.

A large Mr induces large success probabilities of trans-
missions between devices, at the cost of long delays
(details in [6]).

Metrics: We apply six metrics:
1) c(G′): It is the objective function cost of NWPTSTP.
2) trun: It is the running time of algorithms.
3) costrelay: It is the sum of production and placement costs

of deployed relay nodes.
4) tnet: It is the network lifetime. We assume that base

stations and relay nodes are energy-sufficient. Consequently,
we consider tnet to be the average number of times each sensor
node can transmit useful information (unit: cycle), which
depends on the average energy efficiency of sensor nodes [6].
The reported values of tnet are proportional to the assumed
number of times each sensor node can transmit data, which
has not been specified in [6]. We assume that each sensor
node has enough energy to transmit data 107 times, i.e., if
the outage probabilities of transmission routes are zero, then
each sensor node can transmit useful information 107 times.
Therefore, as the simplified expression of energy efficiency
in [6] suggested, we consider tnet = 107

∑
i∈S [1−c(ei)]/|S|,

where c(ei) is the outage probability of the transmission
route between sensor node i and the adjacent relay node or
base station in the transmission paths from sensor nodes to
base stations. We assume that sensor nodes transmit data
to base stations via the minimum-sum-of-outage-probability
paths, i.e., the sums of outage probabilities of transmission
routes in these paths are minimized. These paths can be found
in polynomial time using Dijkstra’s algorithm. Furthermore,
in the supplement, we show that the computational conclusions
in this paper also hold for a widely-used shortest distance
routing strategy (e.g. [40]).

5) tdelay: It is the average delay for the transmissions from
sensor nodes to base stations, i.e., the average sojourn time
of packets in buffers (details in [6]). The reported values of
tdelay are proportional to the frame duration, which has not
been specified in [6]. We set the frame duration to 30 ms.

6) g%: It is the average goodput for the transmissions from
sensor nodes to base stations, i.e., the average percentage of
useful information received by base stations (details in [6]).

Benchmarks: Like the previous work (e.g. [2], [3], [6]),
we generate a large number of relay node placement instances
with different graph features as benchmarks. First, we ran-
domly place all the devices in a square region to guarantee
that they are non-identically distributed. By doing this, we can
apply the model of Bagaa et al. [6] to calculate the outage
probabilities of transmission routes. The transmission range
of a device is proportional to

√
P/γth, where P is the

transmission power [6]. We assume that the transmission
powers of relay nodes are four times larger than those of
sensor nodes, which means that rR = 2rS , as in [2], [3];
and the transmission powers of base stations are such larger
than those of relay nodes that there is a transmission route
between each pair of base stations, as in [2], [3]. We vary
γth in a similar range as that in [6], and set the transmission
powers of sensor and relay nodes in such a way that rR
and rS are large enough to easily generate solvable instances
in the square region above (notably, the theoretical analyses
on the solvability of NWPTSTP, which is equivalent to the
feasibility of two-tiered WSNs for a given set of devices, are in
Section IV-B). We associate each transmission route e with an
outage probability value c(e) that is calculated using the model
of Bagaa et al. [6]. We associate each relay node i with a
random cost value w(i) in the range of [100, 500] (unit: dollar)
to represent the sum of its production and placement costs.
Then, we normalize w(i) to a unit-less value wn(i) = (w(i)−
100)/400 for bring the costs of relay nodes on the same scale
with the outage probabilities of transmission routes. Since base
stations and sensor nodes are compulsory vertices, we assume
that each base station or sensor node i is associated with a
normalized value wn(i) = 0 for guaranteeing that their costs
are not reflected in the objective function cost of NWPTSTP.
Subsequently, we build a graph G(V,E, T, TL, αwn, c) as a
benchmark instance (details in Section III).

A. Evaluating the Steiner Tree Solutions

Here, we evaluate the Steiner tree solutions in Figure 5. For
a graph G(V,E, T, TL, αwn, c), c(G′) =

∑
v∈V ′ αwn(v) +∑

e∈E′ c(e). Given that Mr does not affect c(G′) and trun
(details in [6]), we do not vary Mr here.

Varying α: We vary α in Figure 5a. We observe that GKA
finds similar solutions with PSTA (K = 100), but worse
solutions than PSTA (K = 500). We also observe that PSTA
is faster than GKA. The reason is that PSTA has a smaller
time complexity than GKA. Specifically, PSTA has a time
complexity of O(K|E|+K|V |log|V |), while GKA has a time
complexity of O(|T ||V ||E| + |T ||V |2log|V |), where |T | =
|S|+ |B| for our application (the rigorous proof for the time
complexity of GKA is in the supplement). This indicates that
PSTA may be able to produce better solutions than GKA in a
smaller amount of time in some cases. Moreover, we observe
that c(G′) increases with α, as node weights increase with α.
For this reason, the gaps between the optimal solutions and
the PSTA and GKA solutions increase with α. Nevertheless,
we consider both the PSTA and GKA solutions as near-optimal
for these instances, as their approximation ratios for these
instances are generally below 1.5. Furthermore, GKA is slower
when α = 1. The reason is that node weights are small in this
case. As a result, spiders with the minimum ratios in GKA are
less likely to be 3+ spiders, which means that GKA becomes
slower by finding more spiders and forests to concatenate
compulsory vertices (details in [26]).

Varying |B|: We vary |B| in Figure 5b. We observe that
c(G′) decrease with |B|. The reason is that fewer relay nodes
are required to achieve the network connectivity when |B|
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Fig. 5. Evaluating the Steiner tree solutions of PSTA and GKA. The optimal solutions are produced for comparison using a state-of-the-art Steiner tree exact
solver: SCIP-Jack [41], [42]1. GKA is too slow to be implemented in (d).

is large. We also observe that trun increases with |B|, as |V |
increases with |B|.

Varying |S|: We vary |S| in Figure 5c. We observe that
c(G′) increases with |S|, as more relay nodes are required to
achieve the network connectivity when |S| is large. Notably,
when generating these instances, we let the size of the deploy-
ment square region be proportional to |S|. The reason to do
this is that increasing |S| without increasing the size of the
deployment square region cannot reflect the intuitive fact that
more relay nodes are required to connect more sensor nodes,
as a small number of relay nodes can connect a large number
of sensor nodes in a small region. These instances are sparser
when |S| is large, as |B| and |R| are fixed. As a result,
trun of PSTA does not increase with |S| for these instances.
In comparison, trun of GKA increases significantly with |S|
for these instances, as |S|+ |B| = |T |, and GKA has a time
complexity of O(|T ||V ||E| + |T ||V |2log|V |). This indicates
that PSTA can solve instances that are too large for GKA to
solve, such as those in Figure 5d.

Varying |R|: We vary |R| in Figure 5e. We observe that
c(G′) decreases with |R|. The reason is that a large |R|
provides more and possibly cheaper solutions.

Varying γth: We vary γth in Figure 5f. We observe that
c(G′) increases with γth. The reason is that the transmission
ranges of devices decrease with γth (details in [6]), and as a

1Given enough computational resources (e.g. a few GBs memory consump-
tion), these instances can be solved to optimality by SCIP-Jack within seconds
when using the commercial linear programming solver CPLEX [43]. In this
paper, we do not compare SCIP-Jack, as we focus on non-exact algorithms
that have smaller polynomial time complexities (whereas SCIP-Jack does
not have a polynomial-time guarantee) and lower demands on computational
resources (e.g. less than 10 MBs memory consumption here for PSTA
and GKA).

result, more relay nodes are required to achieve the network
connectivity when γth is large. For the same reason, trun
decreases with γth.

The Solution Quality of Our PSTA: The above compu-
tational results show that PSTA generally produces better
solutions when K is larger. Specifically, in comparison to
PSTA (K = 100), PSTA (K = 500) produces better solutions
for 70.75% instances, same solutions for 17.92% instances,
and worse solutions for 11.33% instances. The reason is
that PSTA finds K low-cost solution trees by randomizing
pressure values, and then return the lowest-cost solution tree.
As a result, when K is larger, PSTA finds more low-cost
solution trees, and is likely to return lower-cost solution
trees. The above computational results also show that PSTA
generally produces better solutions than GKA when K is
large. Specifically, in comparison to GKA, PSTA (K = 500)
produces better solutions for 91.98% instances, same solutions
for 0.02% instances, and worse solutions for 8.00% instances.
We further show this by varying K between 1 and 500 in the
supplement.

B. Evaluating the Designed Wireless Sensor Networks

Varying α: We vary α in Figure 6a. α does not affect OSRP
and RRPL, as they do not consider the existence of node
weights, i.e., the heterogeneous costs of relay nodes. In com-
parison, α affects PSTA and GKA, as the heterogeneous costs
of relay nodes are considered in our approach. We observe
that, when α = 1, the WSNs designed by PSTA and GKA
generally have larger tnet, smaller tdelay , and larger g% than
those designed by OSRP and RRPL. The reason is that a small
α weights the outage probabilities of transmission routes more
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Fig. 6. Evaluating the designed wireless sensor networks by PSTA, GKA, OSRP, and RRPL.

than the costs of relay nodes. This indicates that, in comparison
to OSRP and RRPL, PSTA and GKA can design WSNs with
a higher QoS when α is small.

We also observe that, when α = 150, the WSNs designed
by PSTA and GKA generally have smaller tnet, larger tdelay ,
and smaller g% than those designed by OSRP and RRPL.
The reason is that, when α = 150, PSTA and GKA trade
large outage probabilities of transmission routes with small
costs of relay nodes. On the other hand, both PSTA and
GKA are slower than OSRP and RRPL. We consider this as
acceptable, as we focus on relay node placement in budget-
limited scenarios, where it is more important to design cheap
WSNs with a high QoS than to design WSNs fast.

Varying |B|: We vary |B| in Figure 6b. We observe that,
when |B| is large, the designed WSNs have larger tnet, smaller
tdelay , larger g%, and smaller costrelay . The reason is that
fewer relay nodes are in the middle of sensor nodes and base
stations when |B| is large.

Varying |S|: We vary |S| in Figure 6c. We observe that,
when |S| is large, the designed WSNs generally have smaller
tnet, larger tdelay , smaller g%, and larger costrelay . The reason
is that, when |S| is large, the generated instances are sparser
(details in Section VII-A), and more relay nodes are in the
middle of sensor nodes and base stations.

Varying |R|: We vary |R| in Figure 6d. We observe that,
when |R| is large, the designed WSNs generally have larger
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TABLE I

THE COMPARISON WHEN |B| = 2, |S| = 100, |R| = 20, α = 150,
γth = 6E−10, Mr = 100 (BASE ALGORITHM: RRPL)

tnet, smaller tdelay and larger g%. The reason is that a large
|R| provides more and possibly better solutions. For the same
reason, costrelay of PSTA and GKA decreases significantly
with |R|, as they minimize the relay costs, while costrelay
of RRPL and OSRP does not decrease significantly with |R|,
as they minimize the numbers of relay nodes.

Varying γth: We vary γth in Figure 6e. We observe that,
when γth is small, the designed WSNs have larger tnet,
smaller tdelay , and larger g%. There are two reasons for this:
1) a small γth induces large transmission ranges of devices,
and as a result, a large number of transmission routes; and
2) a small γth induces small outage probabilities of transmis-
sion routes (details in [6]). For the first listed reason above,
costrelay increases with γth, and trun decreases with γth.

Varying Mr: We vary Mr in Figure 6f. Mr does not
affect tnet, costrelay , or trun, as it does not affect CCGs.
In comparison, Mr affects tdelay and g%. We observe that
tdelay and g% increase with Mr, as a large Mr induces large
success probabilities of transmissions between devices, at the
cost of long delays (details in [6]).

The Usefulness of Our PSTA: In practice, it may be prefer-
able to set Mr to a large value in scenarios that are sensitive to
g% but not to tdelay , such as designing WSNs for monitoring
forest fires, where correctly reporting every fire is critical
and a delay of few milliseconds is tolerable. In this case,
PSTA can design cheap WSNs with a high QoS. For example,
in comparison to RRPL, our PSTA can design WSNs with
25% lower relay cost and similar quality of service by average
(specifically, 5% shorter network lifetime, 2% longer delay,
and 0% loss of goodput) when |B| = 2, |S| = 100, |R| = 20,
α = 150, γth = 6E−10, Mr = 100 (details in Table I). This
provides evidence in favor of our PSTA for minimum-cost
relay node placement in budget-limited scenarios.

VIII. CONCLUSION

In this paper, we formulate the new Node-Weighted Partial
Terminal Steiner Tree Problem (NWPTSTP) for minimum-
cost relay node placement. The objective is to minimize the
sum of heterogeneous costs of relay nodes and the sum of
outage probabilities of transmission routes in a routing tree
simultaneously. This extends the previous work that considers
the costs of relay nodes to be homogeneous. We prove that
NWPTSTP can be transformed to the node-weighted Steiner
tree problem. Then, we conduct some theoretical analyses
on Physarum-inspired algorithms to reveal their potential of
computing Steiner trees. Based on these analyses, we propose
a new Physarum-inspired algorithm for solving NWPTSTP.

We conduct computational trials to show that: 1) in compar-
ison to a state-of-the-art approximation algorithm for solving
the node-weighted Steiner tree problem, our algorithm can
produce better solutions in a smaller amount of time; and
2) in comparison to two state-of-the-art relay node placement
algorithms, our algorithm can design cheaper WSNs with
similar quality of service. This indicates the usefulness of our
algorithm for minimum-cost relay node placement.
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Roadmap of this supplement: In Section I, we provide the
proofs for the time complexities of our PSTA and Guha and
Khuller’s 1.6103ln|T | approximation algorithm [1]; in Section
II, we conduct computational trials to show the solution quality
of our PSTA by varying K; and ultimately, in Section III, we
evaluate the designed wireless sensor networks in our paper
based on a widely-used shortest distance routing strategy (e.g.
[2]).

I. THE PROOFS FOR THE TIME COMPLEXITIES

In this section, we provide the rigorous proofs for the time
complexities of PSTA and Guha and Khuller’s 1.6103ln|T |
approximation algorithm [1], i.e., GKA in our paper.

Theorem 7. PSTA has a time complexity of O(K|E| +
K|V |log|V |).
Proof. First, there are two outer-loop steps: updating edge
costs (Step 1; O(|E|)) and finding the Minimum Spanning
Tree (MST) (Step 2; O(|E| + |V |log|V |); Prim’s algorithm
[3]). Then, there are K loops (Step 3). In each loop, we
associate nodes with random pressure values (Step 4; O(|V |)),
and calculate fluxes using these pressures (Step 5; O(|E|)).
Subsequently, we construct CCG′(V,E, c′) and use the MST
technique to produce a feasible solution (Steps 6-11; O(|E|+
|V |log|V |)). Clearly, the time complexity of K loops is
O(K|E| + K|V |log|V |), which is larger than those of two
outer-loop steps. Hence, this theorem holds.

Theorem 8. Guha and Khuller’s 1.6103ln|T | approxima-
tion algorithm [1] has a time complexity of O(|T ||V ||E| +
|T ||V |2log|V |).
Proof. First, a spider with the minimum ratio needs to be
found using Klein and Ravi’s method [5], which involves
finding the lowest-cost path, where the sum of node weights
and edge costs is minimized, between each pair of vertices.
Given that the lowest-cost path can be found by embedding
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Figure 1: The solution quality of PSTA: varying K. The dots
are the solutions of PSTA and GKA. The lines are the Locally
Estimated Scatterplot Smoothing lines [4]. The parameter K
is in PSTA, but not in GKA. We visualize the solutions of
GKA to the same K with the solutions of PSTA for each
instance. Configuration 1: |B| = 2, |S| = 100, |R| = 20,
α = 150, γth = 6E−10. Configuration 2 is different from
Configuration 1 in that α = 50. Configuration 3 is different
from Configuration 1 in that |B| = 8. Configuration 4 is differ-
ent from Configuration 1 in that |S| = 90. Configuration 5 is
different from Configuration 1 in that |R| = 35. Configuration
6 is different from Configuration 1 in that γth = 12E−10.

node weights onto edges and then finding the shortest path
[6] (O(|E| + |V |log|V |); Dijkstra’s algorithm [7]) , the time
complexity of finding this spider is O(|V ||E| + |V |2log|V |).
In scenarios where this spider is not a 3+ spider, a second
spider and a forest need to be found, which involves finding
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the lowest-cost path between each pair of terminal trees
(O(|V ||E| + |V |2log|V |)). We use a spider or a forest to
concatenate terminal trees. The time complexity of such a con-
catenation is O(|V ||E|+ |V |2log|V |). The maximum number
of such concatenations is |T | − 1, i.e., two terminal trees are
concatenated each time. Hence, this theorem holds.

II. THE SOLUTION QUALITY OF PSTA: VARYING K

In this section, we conduct computational trials to show the
solution quality of PSTA by varying K.
Visualizing the computational results: We visualize the
computational results in Figure 1 in this supplement. In each
subfigure, e.g. Figure 1(1), we fix a configuration of five
parameters (|B|, |S|, |R|, α, γth), and randomly generate
1000 instances in the same way as that in our paper. We
apply PSTA and GKA, i.e., Guha and Khuller’s 1.6103ln|T |
approximation algorithm [1], to solve each of these instances.
To apply PSTA to solve each of these instances, we randomly
select the value of K between 1 and 500. We use scatterplot
to visualize the solutions of PSTA and GKA. Since there is no
parameter K in GKA, we visualize the solutions of GKA to
the same K with the solutions of PSTA for each instance. The
purpose of doing this is to visualize the comparison between
the solutions of PSTA and GKA clearly. Moreover, we use the
Locally Estimated Scatterplot Smoothing lines [4] to compare
the solutions of PSTA and GKA statistically.
Evaluating the computational results: In Figure 1 in this
supplement, we apply six configurations of five parameters
(|B|, |S|, |R|, α, γth) for generating different instances.
Configuration 1 is the base configuration, and Configurations
2-6 are used for varying five parameters separately. For every
configuration, PSTA generally produces worse solutions than
GKA when K is smaller than 100, and better solutions than
GKA when K is larger than 300. These computational results
show that whether PSTA is likely to perform better or worse
than GKA mainly depends on K, and PSTA can generally
produce better solutions than GKA when K is large.

III. EVALUATING WIRELESS SENSOR NETWORKS:
THE SHORTEST DISTANCE ROUTING STRATEGY

In this section, we evaluate the designed wireless sensor
networks in our paper based on a widely-used shortest distance
routing strategy, i.e., sensor nodes transmit data to base sta-
tions via paths in which the sums of distances of transmission
routes are minimized (e.g. [2]). We visualize the evaluation
results in Figure 2 in this supplement. The only differences
between Figure 2 in this supplement and Figure 6 in our
paper are values of tnet, tdelay, and g%. In Figure 2 in this
supplement, these values are calculated based on the shortest
distance routing strategy, while in Figure 6 in our paper,
these values are calculated based on the minimum-sum-of-
outage-probability routing strategy, i.e., sensor nodes transmit
data to base stations via paths in which the sums of outage
probabilities of transmission routes are minimized.
Varying α: We vary α in Figure 2a in this supplement. Like
the computational results in our paper, when α = 1, the
WSNs designed by PSTA and GKA generally have larger tnet,
smaller tdelay, and larger g% than those designed by OSRP and

RRPL, while when α = 150, the WSNs designed by PSTA and
GKA generally have smaller tnet, larger tdelay, and smaller
g% than those designed by OSRP and RRPL. The reason is
that a small α weights the outage probabilities of transmission
routes more than the costs of relay nodes.
Varying |B|: We vary |B| in Figure 2b in this supplement.
Like the computational results in our paper, when |B| is large,
the designed WSNs have larger tnet, smaller tdelay, and larger
g%. The reason is that fewer relay nodes are in the middle of
sensor nodes and base stations when |B| is large.
Varying |S|: We vary |S| in Figure 2c in this supplement.
Like the computational results in our paper, when |S| is large,
the designed WSNs generally have smaller tnet, larger tdelay,
and smaller g%. The reason is that, when |S| is large, the
generated instances are sparser, and more relay nodes are in
the middle of sensor nodes and base stations.
Varying |R|: We vary |R| in Figure 2d in this supplement.
Like the computational results in our paper, when |R| is large,
the designed WSNs generally have smaller tdelay. Different
from the computational results in our paper, tnet and g% do
not increase much with |R|. The reason is that, even though a
large |R|may provides transmission routes with smaller outage
probabilities, the shortest distance routing strategy may not
employ these transmission routes.
Varying γth: We vary γth in Figure 2e in this supplement.
Like the computational results in our paper, when γth is small,
the designed WSNs have larger tnet, smaller tdelay, and larger
g%. There are two reasons for this: 1) a small γth induces large
transmission ranges of devices, and as a result, a large number
of transmission routes; and 2) a small γth induces small outage
probabilities of transmission routes (details in [8]).
Varying Mr: We vary Mr in Figure 2f in this supplement.
Like the computational results in our paper, tdelay and g%
increase with Mr. The reason is that a large Mr induces large
success probabilities of transmissions between devices, at the
cost of long delays (details in [8]).
The usefulness of our PSTA: Like the computational results
in our paper, PSTA can design cheap WSNs with a high QoS.
For example, in comparison to RRPL, our PSTA can design
WSNs with 25% lower relay cost and similar qualities of
service by average (specifically, 3% shorter network lifetime,
4% longer delay, and 0% loss of goodput) when |B| = 2,
|S| = 100, |R| = 20, α = 150, γth = 6E−10, Mr = 100
(details in Table I in this supplement). Therefore, the major
conclusion in our paper, i.e., in comparison to two state-of-
the-art relay node placement algorithms, our PSTA can design
cheaper WSNs with similar quality of service, also holds for
the shortest distance routing strategy.

Table I: The comparison when |B| = 2, |S| = 100, |R| = 20,
α = 150, γth = 6E−10, Mr = 100 (base algorithm: RRPL).

Algorithm tnet tdelay g% costrelay trun

PSTA 0.97*base 1.04*base 1.00*base 0.75*base 74.32*base
GKA 0.98*base 1.05*base 1.00*base 0.84*base 2949*base
OSRP 0.97*base 1.02*base 1.00*base 1.22*base 16.13*base
RRPL 1.00*base 1.00*base 1.00*base 1.00*base 1.00*base
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(a) Varying α (|B| = 2, |S| = 100, |R| = 20, γth = 6E−10, Mr = 10)

(b) Varying |B| (|S| = 100, |R| = 20, α = 150, γth = 6E−10, Mr = 10)

(c) Varying |S| (|B| = 2, |R| = 20, α = 150, γth = 6E−10, Mr = 10)

(d) Varying |R| (|B| = 2, |S| = 100, α = 150, γth = 6E−10, Mr = 10)

(e) Varying γth (|B| = 2, |S| = 100, |R| = 20, α = 150, Mr = 10)

(f) Varying Mr (|B| = 2, |S| = 100, |R| = 20, α = 150, γth = 6E−10)

Figure 2: Evaluating the designed wireless sensor networks based on the shortest distance routing strategy.
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