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A Physarum-inspired Algorithm for Minimum-cost
Relay Node Placement in Wireless Sensor

Networks: the supplement
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and Saman Halgamuge, Fellow, IEEE

Roadmap of this supplement: In Section I, we provide the
proofs for the time complexities of our PSTA and Guha and
Khuller’s 1.6103ln|T | approximation algorithm [1]; in Section
II, we conduct computational trials to show the solution quality
of our PSTA by varying K; and ultimately, in Section III, we
evaluate the designed wireless sensor networks in our paper
based on a widely-used shortest distance routing strategy (e.g.
[2]).

I. THE PROOFS FOR THE TIME COMPLEXITIES

In this section, we provide the rigorous proofs for the time
complexities of PSTA and Guha and Khuller’s 1.6103ln|T |
approximation algorithm [1], i.e., GKA in our paper.

Theorem 7. PSTA has a time complexity of O(K|E| +
K|V |log|V |).

Proof. First, there are two outer-loop steps: updating edge
costs (Step 1; O(|E|)) and finding the Minimum Spanning
Tree (MST) (Step 2; O(|E| + |V |log|V |); Prim’s algorithm
[3]). Then, there are K loops (Step 3). In each loop, we
associate nodes with random pressure values (Step 4; O(|V |)),
and calculate fluxes using these pressures (Step 5; O(|E|)).
Subsequently, we construct CCG′(V,E, c′) and use the MST
technique to produce a feasible solution (Steps 6-11; O(|E|+
|V |log|V |)). Clearly, the time complexity of K loops is
O(K|E| + K|V |log|V |), which is larger than those of two
outer-loop steps. Hence, this theorem holds.

Theorem 8. Guha and Khuller’s 1.6103ln|T | approxima-
tion algorithm [1] has a time complexity of O(|T ||V ||E| +
|T ||V |2log|V |).

Proof. First, a spider with the minimum ratio needs to be
found using Klein and Ravi’s method [5], which involves
finding the lowest-cost path, where the sum of node weights
and edge costs is minimized, between each pair of vertices.
Given that the lowest-cost path can be found by embedding
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Figure 1: The solution quality of PSTA: varying K. The dots
are the solutions of PSTA and GKA. The lines are the Locally
Estimated Scatterplot Smoothing lines [4]. The parameter K
is in PSTA, but not in GKA. We visualize the solutions of
GKA to the same K with the solutions of PSTA for each
instance. Configuration 1: |B| = 2, |S| = 100, |R| = 20,
α = 150, γth = 6E−10. Configuration 2 is different from
Configuration 1 in that α = 50. Configuration 3 is different
from Configuration 1 in that |B| = 8. Configuration 4 is differ-
ent from Configuration 1 in that |S| = 90. Configuration 5 is
different from Configuration 1 in that |R| = 35. Configuration
6 is different from Configuration 1 in that γth = 12E−10.

node weights onto edges and then finding the shortest path
[6] (O(|E| + |V |log|V |); Dijkstra’s algorithm [7]) , the time
complexity of finding this spider is O(|V ||E| + |V |2log|V |).
In scenarios where this spider is not a 3+ spider, a second
spider and a forest need to be found, which involves finding
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the lowest-cost path between each pair of terminal trees
(O(|V ||E| + |V |2log|V |)). We use a spider or a forest to
concatenate terminal trees. The time complexity of such a con-
catenation is O(|V ||E|+ |V |2log|V |). The maximum number
of such concatenations is |T | − 1, i.e., two terminal trees are
concatenated each time. Hence, this theorem holds.

II. THE SOLUTION QUALITY OF PSTA: VARYING K

In this section, we conduct computational trials to show the
solution quality of PSTA by varying K.
Visualizing the computational results: We visualize the
computational results in Figure 1 in this supplement. In each
subfigure, e.g. Figure 1(1), we fix a configuration of five
parameters (|B|, |S|, |R|, α, γth), and randomly generate
1000 instances in the same way as that in our paper. We
apply PSTA and GKA, i.e., Guha and Khuller’s 1.6103ln|T |
approximation algorithm [1], to solve each of these instances.
To apply PSTA to solve each of these instances, we randomly
select the value of K between 1 and 500. We use scatterplot
to visualize the solutions of PSTA and GKA. Since there is no
parameter K in GKA, we visualize the solutions of GKA to
the same K with the solutions of PSTA for each instance. The
purpose of doing this is to visualize the comparison between
the solutions of PSTA and GKA clearly. Moreover, we use the
Locally Estimated Scatterplot Smoothing lines [4] to compare
the solutions of PSTA and GKA statistically.
Evaluating the computational results: In Figure 1 in this
supplement, we apply six configurations of five parameters
(|B|, |S|, |R|, α, γth) for generating different instances.
Configuration 1 is the base configuration, and Configurations
2-6 are used for varying five parameters separately. For every
configuration, PSTA generally produces worse solutions than
GKA when K is smaller than 100, and better solutions than
GKA when K is larger than 300. These computational results
show that whether PSTA is likely to perform better or worse
than GKA mainly depends on K, and PSTA can generally
produce better solutions than GKA when K is large.

III. EVALUATING WIRELESS SENSOR NETWORKS:
THE SHORTEST DISTANCE ROUTING STRATEGY

In this section, we evaluate the designed wireless sensor
networks in our paper based on a widely-used shortest distance
routing strategy, i.e., sensor nodes transmit data to base sta-
tions via paths in which the sums of distances of transmission
routes are minimized (e.g. [2]). We visualize the evaluation
results in Figure 2 in this supplement. The only differences
between Figure 2 in this supplement and Figure 6 in our
paper are values of tnet, tdelay, and g%. In Figure 2 in this
supplement, these values are calculated based on the shortest
distance routing strategy, while in Figure 6 in our paper,
these values are calculated based on the minimum-sum-of-
outage-probability routing strategy, i.e., sensor nodes transmit
data to base stations via paths in which the sums of outage
probabilities of transmission routes are minimized.
Varying α: We vary α in Figure 2a in this supplement. Like
the computational results in our paper, when α = 1, the
WSNs designed by PSTA and GKA generally have larger tnet,
smaller tdelay, and larger g% than those designed by OSRP and

RRPL, while when α = 150, the WSNs designed by PSTA and
GKA generally have smaller tnet, larger tdelay, and smaller
g% than those designed by OSRP and RRPL. The reason is
that a small α weights the outage probabilities of transmission
routes more than the costs of relay nodes.
Varying |B|: We vary |B| in Figure 2b in this supplement.
Like the computational results in our paper, when |B| is large,
the designed WSNs have larger tnet, smaller tdelay, and larger
g%. The reason is that fewer relay nodes are in the middle of
sensor nodes and base stations when |B| is large.
Varying |S|: We vary |S| in Figure 2c in this supplement.
Like the computational results in our paper, when |S| is large,
the designed WSNs generally have smaller tnet, larger tdelay,
and smaller g%. The reason is that, when |S| is large, the
generated instances are sparser, and more relay nodes are in
the middle of sensor nodes and base stations.
Varying |R|: We vary |R| in Figure 2d in this supplement.
Like the computational results in our paper, when |R| is large,
the designed WSNs generally have smaller tdelay. Different
from the computational results in our paper, tnet and g% do
not increase much with |R|. The reason is that, even though a
large |R|may provides transmission routes with smaller outage
probabilities, the shortest distance routing strategy may not
employ these transmission routes.
Varying γth: We vary γth in Figure 2e in this supplement.
Like the computational results in our paper, when γth is small,
the designed WSNs have larger tnet, smaller tdelay, and larger
g%. There are two reasons for this: 1) a small γth induces large
transmission ranges of devices, and as a result, a large number
of transmission routes; and 2) a small γth induces small outage
probabilities of transmission routes (details in [8]).
Varying Mr: We vary Mr in Figure 2f in this supplement.
Like the computational results in our paper, tdelay and g%
increase with Mr. The reason is that a large Mr induces large
success probabilities of transmissions between devices, at the
cost of long delays (details in [8]).
The usefulness of our PSTA: Like the computational results
in our paper, PSTA can design cheap WSNs with a high QoS.
For example, in comparison to RRPL, our PSTA can design
WSNs with 25% lower relay cost and similar qualities of
service by average (specifically, 3% shorter network lifetime,
4% longer delay, and 0% loss of goodput) when |B| = 2,
|S| = 100, |R| = 20, α = 150, γth = 6E−10, Mr = 100
(details in Table I in this supplement). Therefore, the major
conclusion in our paper, i.e., in comparison to two state-of-
the-art relay node placement algorithms, our PSTA can design
cheaper WSNs with similar quality of service, also holds for
the shortest distance routing strategy.

Table I: The comparison when |B| = 2, |S| = 100, |R| = 20,
α = 150, γth = 6E−10, Mr = 100 (base algorithm: RRPL).

Algorithm tnet tdelay g% costrelay trun

PSTA 0.97*base 1.04*base 1.00*base 0.75*base 74.32*base
GKA 0.98*base 1.05*base 1.00*base 0.84*base 2949*base
OSRP 0.97*base 1.02*base 1.00*base 1.22*base 16.13*base
RRPL 1.00*base 1.00*base 1.00*base 1.00*base 1.00*base



3

(a) Varying α (|B| = 2, |S| = 100, |R| = 20, γth = 6E−10, Mr = 10)

(b) Varying |B| (|S| = 100, |R| = 20, α = 150, γth = 6E−10, Mr = 10)

(c) Varying |S| (|B| = 2, |R| = 20, α = 150, γth = 6E−10, Mr = 10)

(d) Varying |R| (|B| = 2, |S| = 100, α = 150, γth = 6E−10, Mr = 10)

(e) Varying γth (|B| = 2, |S| = 100, |R| = 20, α = 150, Mr = 10)

(f) Varying Mr (|B| = 2, |S| = 100, |R| = 20, α = 150, γth = 6E−10)

Figure 2: Evaluating the designed wireless sensor networks based on the shortest distance routing strategy.
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