
Finding Group Steiner Trees in Graphs with both Vertex and
Edge Weights

Yahui Sun
School of Computing,

National University of Singapore
yahuisun@outlook.com

Xiaokui Xiao
School of Computing,

National University of Singapore
xkxiao@nus.edu.sg

Bin Cui
Department of Computer Science,

Peking University
bin.cui@pku.edu.cn

Saman Halgamuge
School of Electrical, Mechanical and

Infrastructure Engineering,
University of Melbourne
saman@unimelb.edu.au

Theodoros Lappas
School of Business,

Stevens Institute of Technology,
New Jersey, United States
tlappas@stevens.edu

Jun Luo
School of Computer Science
and Engineering, Nanyang
Technological University

junluo@ntu.edu.sg

ABSTRACT
Given an undirected graph and a number of vertex groups, the
group Steiner tree problem is to find a tree such that (i) this tree
contains at least one vertex in each vertex group; and (ii) the sum of
vertex and edge weights in this tree is minimized. Solving this prob-
lem is useful in various scenarios, ranging from social networks
to knowledge graphs. Most existing work focuses on solving this
problem in vertex-unweighted graphs, and not enough work has
been done to solve this problem in graphs with both vertex and edge
weights. Here, we develop several algorithms to address this issue.
Initially, we extend two algorithms from vertex-unweighted graphs
to vertex- and edge-weighted graphs. The first one has no approxi-
mation guarantee, but often produces good solutions in practice.
The second one has an approximation guarantee of |Γ | − 1, where
|Γ | is the number of vertex groups. Since the extended (|Γ | − 1)-
approximation algorithm is too slow when all vertex groups are
large, we develop two new (|Γ | − 1)-approximation algorithms that
overcome this weakness. Furthermore, by employing a dynamic pro-
gramming approach, we develop another (|Γ |−ℎ+1)-approximation
algorithm, where ℎ is a parameter between 2 and |Γ |. Experiments
show that, while no algorithm is the best in all cases, our algorithms
considerably outperform the state of the art in many scenarios.
PVLDB Reference Format:
Yahui Sun, Xiaokui Xiao, Bin Cui, Saman Halgamuge, Theodoros Lappas,
and Jun Luo. Finding Group Steiner Trees in Graphs with both Vertex and
Edge Weights. PVLDB, 14(7): 1137 - 1149, 2021.
doi:10.14778/3450980.3450982

PVLDB Artifact Availability:
The C++ source codes, datasets, and the supplement have been made avail-
able at https://github.com/YahuiSun/GroupSteinerTree.

1 INTRODUCTION
Given an undirected graph𝐺 and a number of vertex groups, a group
Steiner tree is a tree in 𝐺 such that (i) this tree contains at least one

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 7 ISSN 2150-8097.
doi:10.14778/3450980.3450982

vertex in each vertex group; and (ii) the total weight of vertices
and edges in this tree is minimized. Finding group Steiner trees is
an interesting problem that has applications in various scenarios,
including team formation in social networks (e.g., [28, 33, 43]),
information retrieval in relational databases (e.g., [11, 14, 30, 31]),
design of very-large-scale integrated circuits (e.g., [19, 24, 25, 36]),
and pathway identification in metabolic networks (e.g., [17]). Most
existing work on finding group Steiner trees (e.g., [19, 24, 25, 28,
31, 36]), however, focuses on the case where vertex weights are
omitted, i.e., only edge weights are considered when calculating the
total weight of a tree. Nevertheless, there are useful applications
that require finding group Steiner trees in graphs with both vertex
and edge weights. We describe an example as follows.

Consider a social network where vertices and edges represent ex-
perts and collaborations between experts, respectively. Each vertex
is associated with some skills and a weight value representing the
hiring cost of expert. Each edge is associated with a weight value
representing the distance between two experts. Suppose that we
are to find a team of experts for performing a task that requires a
set Γ of skills. For this purpose, we can find a group Steiner tree for
|Γ | vertex groups such that each vertex group is the set of vertices
that are associated with a specific skill in Γ. Since this tree contains
at least one vertex in each vertex group, the vertices in this tree
represent a team of experts who collectively have all the required
skills for performing the task. Since the total weight of vertices
and edges in this tree is minimized, we can strike a good trade-off
between the cost of hiring these experts and their closeness to
each other, which could affect the efficiency of their collaboration
[28, 33, 43]. We can adjust this trade-off by regulating vertex and
edge weights, depending on whether we prefer lowering the hiring
cost or reducing the distances between experts. We visualize an
example in the DBLP [2] network in Figure 1.

Some exact algorithms [14, 31] have been developed for finding
optimal group Steiner trees. The most advanced exact algorithms,
i.e., PrunedDP and PrunedDP++ in [31], rely on techniques that
only hold in vertex-unweighted scenarios (details in the supplement
[6]), and thus do not suit finding optimal group Steiner trees in
graphs with both vertex and edge weights. The other simpler exact
algorithms, i.e.,DPBF in [14] andBasic in [31], can perform this task.
However, due to the NP-hardness of the group Steiner tree problem
[25, 37], these algorithms have exponential time complexities with

1137

Figure 1: A snapshot of the DBLP [2] network, where green
and orange experts have the skills of Steiner trees and power
grids, respectively. The thick edge highlights a team of two
experts who collectively have these two skills. By minimiz-
ing vertex and edgeweights of experts, we can lower the cost
of hiring experts, and reduce the distances between experts.

respect to the number of vertex groups: |Γ |. As a result, even though
|Γ | is often limited in practice (e.g., in team formation scenarios
where |Γ | is the number of skills for performing a task), it is still
too slow to use these algorithms to find optimal group Steiner trees
in some cases. Therefore, it is also preferable to develop non-exact
algorithms that find sub-optimal group Steiner trees.

Most existing non-exact algorithms ignore vertex weights (e.g.,
[19, 25, 28, 36]). To the best of our knowledge, the algorithm in [8] is
the only existing non-exact algorithm that considers vertex weights.
It achieves an approximation guarantee of𝑂 (log |𝑉 | log |Γ |), where
|𝑉 | is the number of vertices. However, it has a large time complexity
of |𝑉 |�̃� (𝑡𝑤 (𝐺)2) , where �̃� (𝑥) = 𝑂 (𝑥 · polylog(𝑥)), and 𝑡𝑤 (𝐺) is the
treewidth of the input graph 𝐺 , which often ranges from dozens to
hundreds for real graphs [34]. As a consequence, the algorithm in
[8] is of theoretical interest only. Hence, there is a need for more
practical algorithms for finding group Steiner trees in graphs with
both vertex and edge weights.

To address the above issue, we make the following contributions.
• We extend a heuristic algorithm [28] from vertex-unweighted
graphs to vertex- and edge-weighted graphs (Section 3). The
extension, dubbed exENSteiner, has a time complexity of

𝑂
(
|Γ | · (|𝐸 | + |𝑉 | log |𝑉 | + |Γ | log |Γ | + |Γ | |𝑉 |)

)
,

where |𝐸 | is the number of edges.
• Since exENSteiner has no approximation guarantee, we further
extend a (|Γ | − 1)-approximation algorithm [25]. The extension,
dubbed exIhlerA (Section 4.1), has a time complexity of

𝑂
(
|𝑔𝑚𝑖𝑛 | · (|𝐸 | + |𝑉 | log |𝑉 | + |Γ | |𝑉 |)

)
,

where |𝑔𝑚𝑖𝑛 | is the size of the smallest vertex group.
• When |𝑔𝑚𝑖𝑛 | is large, exIhlerA is too slow to be used. To address
this issue, we propose a new (|Γ | − 1)-approximation algorithm,
dubbed FastAPP (Section 4.2), which has a time complexity of

𝑂
(
|Γ | · (|𝐸 | + |𝑉 | log |𝑉 |)

)
.

• FastAPP does not dominate the extensions on practical solution
qualities. To attain this dominance while maintaining a high
efficiency, we propose another (|Γ |−1)-approximation algorithm,
dubbed ImprovAPP (Section 4.3). It has a time complexity of

𝑂
(
|Γ | ·

(
|𝐸 | + |𝑉 | log |𝑉 | + |𝑔𝑚𝑖𝑛 | · (|𝑉 | + log |Γ |)

))
,

which is close to𝑂 (|Γ | · (|𝐸 |+ |𝑉 | log |𝑉 |)) in practice (we explain
this in Section 7.3).

• In addition, by employing an exact algorithm for group Steiner
trees, i.e., DPBF in [14], we propose a (|Γ | −ℎ+1)-approximation
algorithm, dubbed PartialOPT (Section 5), where ℎ ∈ [2, |Γ |] is
a tunable parameter. The time complexity of PartialOPT is

𝑂
(
|𝑔𝑚𝑖𝑛 | ·

(
|Γ | |𝑉 | + 3ℎ |𝑉 | + 2ℎ (|𝐸 | + ℎ |𝑉 | + |𝑉 | log |𝑉 |)

))
.

To our knowledge, PartialOPT provides the tightest polynomial-
time approximation guarantee to date for finding group Steiner
trees in treewidth-unbounded graphs with both vertex and edge
weights.

• We evaluate our algorithms using real datasets (Section 7), and
show that, while no algorithm is the best in all cases, our al-
gorithms considerably outperform the state of the art in many
scenarios. In particular, (i) our algorithms scale well to |Γ |, and
thus support the exact algorithms [14, 31] that have exponential
time complexities with respect to |Γ |; and (ii) ImprovAPP has a
similar speed with FastAPP, and combines superior efficiency
and solution quality when it is too slow to find optimal solutions.

2 PROBLEM FORMULATION
We consider an undirected graph𝐺 (𝑉 , 𝐸,𝑤, 𝑐), where𝑉 is the set of
vertices, 𝐸 is the set of edges,𝑤 is a functionwhichmaps each vertex
𝑖 ∈ 𝑉 to a nonnegative value𝑤 (𝑖) that we refer to as vertex weight,
and 𝑐 is a function which maps each edge 𝑒 ∈ 𝐸 to a non-negative
value 𝑐 (𝑒) that we refer to as edge weight. We also consider a set Γ
of vertex groups such that each vertex group 𝑔 ∈ Γ is a subset of
vertices, i.e., 𝑔 ⊆ 𝑉 . Notably, vertex groups may overlap with each
other. We aim to address the following problem.

Problem 1 (Vertex- and Edge-Weighted Group Steiner Tree
[14]). Given an undirected graph 𝐺 (𝑉 , 𝐸,𝑤, 𝑐) and a set Γ of vertex
groups, the vertex- and edge-weighted group Steiner tree problem asks
for a tree 𝐺 ′(𝑉 ′, 𝐸 ′),𝑉 ′ ⊆ 𝑉 , 𝐸 ′ ⊆ 𝐸 such that (i) 𝑔 ∩𝑉 ′ ≠ ∅ for all
𝑔 ∈ Γ (i.e., this tree contains at least one vertex in each group in Γ),
and (ii) the regulated weight of this tree, namely,

𝑐𝜆 (𝐺 ′) = (1 − 𝜆)∑𝑣∈𝑉 ′ 𝑤 (𝑣) + 𝜆
∑
𝑒∈𝐸′ 𝑐 (𝑒) (1)

is minimized, where 𝜆 ∈ [0, 1] is a regulating weight.
We note that Problem 1 is NP-hard even when 𝐺 is a tree and

all vertices have zero weights [25, 37]. We refer to its special case
where all vertices have zero weights as the vertex-unweighted group
Steiner tree problem [36]. We assume that |Γ | ≥ 2, since Problem 1
is trivial when |Γ | = 1. Moreover, we assume that 𝐺 is connected.
If 𝐺 is not connected, then we can solve Problem 1 in𝐺 as follows:
first, we obtain a solution in each maximal connected component
of 𝐺 separately; and then, we evaluate all the obtained solutions,
and return the one with the minimum regulated weight.

3 AN EXTENDED HEURISTIC ALGORITHM
The ENSteiner algorithm in [28] is a heuristic algorithm for finding
vertex-unweighted group Steiner trees. It employs (i) a transfor-
mation [16] from group Steiner trees to Steiner trees in vertex-
unweighted graphs; and (ii) a 2-approximation algorithm [41] for

1138

finding vertex-unweighted Steiner trees. In this section, we extend
ENSteiner for finding vertex- and edge-weighted group Steiner
trees. First, in Sections 3.1 and 3.2, we extend the transformation and
the 2-approximation algorithm, respectively. Then, in Section 3.3,
we extend ENSteiner. Our extension is dubbed exENSteiner.

3.1 From group Steiner trees to Steiner trees
The Steiner tree problem in graphs with vertex and edge weights
is a special case of Problem 1 where each vertex group contains
exactly one vertex. We introduce this problem as follows.

Problem 2 (Vertex- and Edge-Weighted Steiner Tree [27]).
Given a connected undirected graph 𝐺𝑡 (𝑉𝑡 , 𝐸𝑡 ,𝑤𝑡 , 𝑐𝑡) and a set 𝑇𝑡 ⊆
𝑉𝑡 of vertices that we refer to as compulsory vertices, the vertex- and
edge-weighted Steiner tree problem asks for a tree 𝐺 ′

𝑡 (𝑉 ′
𝑡 , 𝐸

′
𝑡),𝑉 ′

𝑡 ⊆
𝑉𝑡 , 𝐸

′
𝑡 ⊆ 𝐸𝑡 such that (i) 𝑇𝑡 ⊆ 𝑉 ′

𝑡 (i.e., all compulsory vertices are in
this tree), and (ii) the weight of this tree, namely,

𝑐 (𝐺 ′
𝑡) =

∑
𝑣∈𝑉 ′

𝑡
𝑤𝑡 (𝑣) +

∑
𝑒∈𝐸′

𝑡
𝑐𝑡 (𝑒) (2)

is minimized.
We refer to the special case of Problem 2 where all vertex weights

are zero as the vertex-unweighted Steiner tree problem [15]. We
observe that any instance of Problem 1 can be transformed to an
equivalent instance of Problem 2, as shown as follows. We put the
proof of this transformation in the supplement [6].

Theorem 1. Let 𝐺 (𝑉 , 𝐸,𝑤, 𝑐) be a connected undirected graph,
and Γ be a set of vertex groups. Let 𝐺𝑡 (𝑉𝑡 , 𝐸𝑡 ,𝑤𝑡 , 𝑐𝑡) be a connected
undirected graph, and 𝑇𝑡 ⊆ 𝑉𝑡 be a set of compulsory vertices. Based
on 𝐺 and Γ, we construct 𝐺𝑡 and 𝑇𝑡 in the following way:
(1) Initialize 𝑉𝑡 = 𝑉 , 𝐸𝑡 = 𝐸, 𝑇𝑡 = ∅,𝑤𝑡 = (1 − 𝜆)𝑤 , and 𝑐𝑡 = 𝜆𝑐 .
(2) For each vertex group 𝑔 ∈ Γ, (i) add a dummy vertex 𝑣𝑔 into 𝑇𝑡

and 𝑉𝑡 , such that𝑤𝑡 (𝑣𝑔) = 0, and (ii) add dummy edges (𝑣𝑔, 𝑗)
for all 𝑗 ∈ 𝑔 into 𝐸𝑡 , such that 𝑐𝑡 (𝑣𝑔, 𝑗) = 𝑀 , and𝑀 is a constant
satisfying

𝑀 > (1 − 𝜆)∑𝑣∈𝑉 𝑤 (𝑣) + 𝜆
∑
𝑒∈𝐸𝑀𝑆𝑇

𝑐 (𝑒), (3)

and 𝐸𝑀𝑆𝑇 is the set of edges in a Minimum Spanning Tree of 𝐺 .
Let Θ𝐺𝑡 be an optimal solution to the vertex- and edge-weighted
Steiner tree problem in𝐺𝑡 , and Θ𝑛𝑜𝑛

𝐺𝑡
be the non-dummy part of Θ𝐺𝑡 .

Then, there is an optimal solution to the vertex- and edge-weighted
group Steiner tree problem in 𝐺 , namely, Θ𝐺 , that has the same sets
of vertices and edges with Θ𝑛𝑜𝑛

𝐺𝑡
.

This transformation is modified from the existing method [16] of
transforming the vertex-unweighted group Steiner tree problem to
the vertex-unweighted Steiner tree problem. The difference is that
we incorporate vertex weights into this transformation. Moreover,
the value of𝑀 in the existing method is unspecified and vaguely
described as a large value. Due to this un-rigorousness, it may be
difficult to decide the usefulness of this transformation in practice,
e.g., if𝐺 contains large weights, then it is difficult to decide whether
there is a feasible𝑀 that guarantees the correctness of this trans-
formation. We address this issue by specifying the bound of𝑀 . In
practice, we can set 𝑀 as 1 + (1 − 𝜆)∑𝑣∈𝑉 𝑤 (𝑣) + 𝜆

∑
𝑒∈𝐸 𝑐 (𝑒) by

traversing all vertices and edges in 𝑂 (|𝑉 | + |𝐸 |) time.
Example. In Figure 2, 𝐺 contains five vertices 𝑣1, . . . , 𝑣5, whose
weights are {𝑤 (𝑣1), . . . ,𝑤 (𝑣5)} = {2, 1, 1, 1, 1}. Given the three ver-
tex groups, we transform 𝐺 to 𝐺𝑡 , which contains three dummy

Figure 2: An example of the transformation in Theorem 1,
where the graph on the left (resp., right) is𝐺 (resp.,𝐺𝑡). There
are three vertex groups: 𝑔1 = {𝑣1, 𝑣2}, 𝑔2 = {𝑣3} and 𝑔3 = {𝑣5}.
vertices: 𝑇𝑡 = {𝑣𝑑1, 𝑣𝑑2, 𝑣𝑑3}. The transformed vertex weights
are: {𝑤𝑡 (𝑣1), . . . ,𝑤𝑡 (𝑣5),𝑤𝑡 (𝑣𝑑1),𝑤𝑡 (𝑣𝑑2),𝑤𝑡 (𝑣𝑑3)} = (1 − 𝜆) ·
{2, 1, 1, 1, 1, 0, 0, 0}. In addition, we have𝑀 > 6. The red thick edges
in the figure highlight (i) the optimal solution to the vertex- and
edge-weighted group Steiner tree problem in 𝐺 , i.e., Θ𝐺 , and (ii)
the optimal solution to the vertex- and edge-weighted Steiner tree
problem in 𝐺𝑡 , i.e., Θ𝐺𝑡 .

3.2 The LANCET algorithm
The 2-approximation algorithm in [41] is designed for finding
vertex-unweighted Steiner trees. Here, we extend it to find vertex-
and edge-weighted Steiner trees. Our extension is dubbed LANCET,
i.e., the lowest weight path concatenating algorithm.

LANCET uses the concept of lowest weight paths (LWPs), which
is defined as follows. An LWP between two vertices 𝑡1 and 𝑡2 in a
graph 𝐺 (𝑉 , 𝐸,𝑤, 𝑐) is a simple path that (i) has 𝑡1 and 𝑡2 as its two
endpoints and (ii) minimizes the total (not 𝜆-regulated) weight of
vertices and edges in this path. We can find the LWPs from a vertex
𝑠 ∈ 𝑉 to the other vertices in 𝐺 as follows. First, for each edge
(𝑢, 𝑣) ∈ 𝐸, we redefine its weight as: 𝑐 ′(𝑢, 𝑣) = 𝑐 (𝑢, 𝑣) +𝑤 (𝑢)/2 +
𝑤 (𝑣)/2. After that, we employ Dijkstra’s algorithm [13] to find the
shortest paths from 𝑠 to the other vertices for the above new edge
weights. These shortest paths are the LWPs from 𝑠 to the other
vertices for the original vertex and edge weights.
Description of LANCET. Algorithm 1 shows the pseudo code of
LANCET. The algorithm randomly selects a compulsory vertex
𝑖𝑟𝑎𝑛𝑑 ∈ 𝑇𝑡 (Line 1), and initializes the following (Line 2):
• The set of connected vertices: 𝑉1 = {𝑖𝑟𝑎𝑛𝑑 }.
• The set of unconnected compulsory vertices: 𝑉2 = 𝑇𝑡 \ 𝑖𝑟𝑎𝑛𝑑 .
• An empty tree Θ(𝑉Θ, 𝐸Θ) = ∅.
• An empty min Fibonacci heap (priority queue) [18] 𝑄 = ∅.
Then, it concatenates the LWPs between vertices in 𝑉1 and 𝑉2 as
follows (Lines 3-11). First, for every vertex 𝑖 ∈ 𝑉2, the algorithm
finds the LWPs from 𝑖 to all vertices in 𝑉𝑡 , and stores these LWPs
in a lookup table (Line 3). Then, the algorithm pushes into 𝑄 the
LWPs from the vertices in 𝑉2 to 𝑉1 = {𝑖𝑟𝑎𝑛𝑑 }, with the weights
of these LWPs as priorities (Line 4). Subsequently, the algorithm
iteratively pops out the top entry 𝐿𝑊𝑃𝑚𝑖𝑛 (𝑉𝑚𝑖𝑛, 𝐸𝑚𝑖𝑛) in 𝑄 (Lines
5-6), and processes it in four steps (Lines 7-10):
(1) Merge 𝐿𝑊𝑃𝑚𝑖𝑛 (𝑉𝑚𝑖𝑛, 𝐸𝑚𝑖𝑛) into Θ.
(2) Update the set of connected vertices: 𝑉1.
(3) Update the set of unconnected compulsory vertices: 𝑉2.
(4) For each vertex 𝑖 ∈ 𝑉2 and each newly connected vertex 𝑗 , iden-

tify the LWP between 𝑖 and 𝑗 , i.e., 𝐿𝑊𝑃𝑖→𝑗 , from the lookup ta-
ble. Let 𝐿𝑊𝑃𝑖→∗ be the LWP in𝑄 that starts from 𝑖 . If 𝐿𝑊𝑃𝑖→𝑗

has a smaller weight than 𝐿𝑊𝑃𝑖→∗, then replace 𝐿𝑊𝑃𝑖→∗ with
𝐿𝑊𝑃𝑖→𝑗 in 𝑄 (Line 10). In other words, for each vertex 𝑖 ∈ 𝑉2,
𝑄 keeps track of the minimum-weight LWP from 𝑖 to 𝑉1.

1139

Algorithm 1 The LANCET algorithm
Input: a graph 𝐺𝑡 (𝑉𝑡 , 𝐸𝑡 ,𝑤𝑡 , 𝑐𝑡), a set of vertices 𝑇𝑡 ⊆ 𝑉𝑡
Output: a Steiner tree: Θ(𝑉Θ, 𝐸Θ)
1: Randomize 𝑖𝑟𝑎𝑛𝑑 ∈ 𝑇𝑡
2: Initialize 𝑉1 = {𝑖𝑟𝑎𝑛𝑑 }, 𝑉2 = 𝑇𝑡 \ 𝑖𝑟𝑎𝑛𝑑 , Θ = 𝑄 = ∅
3: Find and store 𝐿𝑊𝑃𝑖→𝑗 | ∀𝑖 ∈ 𝑉2,∀𝑗 ∈ 𝑉𝑡
4: 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑄, 𝐿𝑊𝑃𝑖→𝑖𝑟𝑎𝑛𝑑) | ∀𝑖 ∈ 𝑉2
5: while 𝑉2 ≠ ∅ do
6: 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 (𝑄, 𝐿𝑊𝑃𝑚𝑖𝑛 (𝑉𝑚𝑖𝑛, 𝐸𝑚𝑖𝑛))
7: Θ = Θ ∪ 𝐿𝑊𝑃𝑚𝑖𝑛 (𝑉𝑚𝑖𝑛, 𝐸𝑚𝑖𝑛)
8: 𝑉1 = 𝑉1 ∪𝑉𝑚𝑖𝑛

9: 𝑉2 = 𝑉2 \𝑉𝑚𝑖𝑛

10: 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑄, 𝐿𝑊𝑃𝑖→𝑉1) | ∀𝑖 ∈ 𝑉2
11: end while
12: Return Θ(𝑉Θ, 𝐸Θ)

LANCET iterates this process until all the compulsory vertices are
connected. In the end, it returns Θ (Line 12).
Example of LANCET. Consider 𝐺𝑡 in Figure 2 (details in Sec-
tion 3.1). Suppose that LANCET initializes 𝑉1 = {𝑣𝑑1} and 𝑉2 =
{𝑣𝑑2, 𝑣𝑑3}. Then, it pushes into𝑄 two paths as follows: 𝐿𝑊𝑃𝑣𝑑2→𝑣𝑑1
as {𝑣𝑑2 → 𝑣3 → 𝑣4 → 𝑣2 → 𝑣𝑑1}, and 𝐿𝑊𝑃𝑣𝑑3→𝑣𝑑1 as {𝑣𝑑3 →
𝑣5 → 𝑣4 → 𝑣2 → 𝑣𝑑1}. It concatenates 𝐿𝑊𝑃𝑣𝑑2→𝑣𝑑1 . After this con-
catenation, 𝑉1 = {𝑣𝑑2, 𝑣3, 𝑣4, 𝑣2, 𝑣𝑑1} and 𝑉2 = {𝑣𝑑3}. Subsequently,
it updates and concatenates 𝐿𝑊𝑃𝑣𝑑3→𝑉1 as {𝑣𝑑3 → 𝑣5 → 𝑣4}. After
that, 𝑉2 = ∅. LANCET returns the highlighted red tree in 𝐺𝑡 .
Approximation guarantee of LANCET. LANCET is an extension
of the 2-approximation algorithm in [41]. The main difference is
that the 2-approximation algorithm concatenates shortest paths for
finding vertex-unweighted Steiner trees, while LANCET concate-
nates lowest weight paths for finding vertex- and edge-weighted
Steiner trees. Another difference is that the ratio of 2 does not hold
for LANCET. We show the approximation guarantee of LANCET as
follows. We put the proof of this guarantee in the supplement [6].

Theorem 2. LANCET has a sharp approximation guarantee of
|𝑇𝑡 | − 1 for solving Problem 2.

Time complexity of LANCET:

𝑂
(
|𝑇𝑡 | · (|𝐸𝑡 | + |𝑉𝑡 | log |𝑉𝑡 |)

)
.

The details of this time complexity are in the supplement [6].

3.3 The exENSteiner algorithm
Here, we present exENSteiner, which is an extension of ENSteiner
in [28]. The difference is that we replace the existing transformation
[16] and the 2-approximation algorithm [41] in ENSteiner with our
extended transformation and LANCET, respectively.
Description of exENSteiner. Algorithm 2 shows the pseudo code
of exENSteiner. The algorithm first transforms 𝐺 and Γ to 𝐺𝑡 and
𝑇𝑡 based on Theorem 1 (Line 1). Then, it employs LANCET to find
a Steiner tree in 𝐺𝑡 : Θ𝑡 (𝑉Θ𝑡 , 𝐸Θ𝑡) (Line 2). Recall that LANCET
initially considers a random dummy vertex as connected, and then
iteratively concatenates the minimum-weight LWPs between con-
nected vertices and unconnected dummy vertices. Suppose that
the first concatenated LWP connects two dummy vertices 𝑣𝑑1 and

Algorithm 2 The exENSteiner algorithm
Input: a graph𝐺 (𝑉 , 𝐸,𝑤, 𝑐), a set of vertex groups Γ, a regulating
weight 𝜆
Output: a group Steiner tree: Θ(𝑉Θ, 𝐸Θ)
1: 𝐺 (𝑉 , 𝐸,𝑤, 𝑐) & Γ → 𝐺𝑡 (𝑉𝑡 , 𝐸𝑡 ,𝑤𝑡 , 𝑐𝑡) & 𝑇𝑡 (Theorem 1)
2: Θ𝑡 (𝑉Θ𝑡 , 𝐸Θ𝑡) = 𝐿𝐴𝑁𝐶𝐸𝑇 (𝐺𝑡 ,𝑇𝑡)
3: Θ(𝑉Θ, 𝐸Θ) = Θ𝑡 \ ∪𝑔∈Γ𝑣𝑔
4: Θ = 𝑀𝑆𝑇 (Θ)

𝑣𝑑2. Since (i) dummy vertices only connect non-dummy vertices
via dummy edges; and (ii) the weight of each dummy edge is 𝑀 ,
which is larger than the (𝜆-regulated) total weight of a Minimum
Spanning Tree (MST) of𝐺 (see Equation (3)), the first concatenated
LWP contains two dummy edges, and 𝑣𝑑1 and 𝑣𝑑2 are leaves of this
LWP, and the weight of this LWP is smaller than 3𝑀 , i.e., any path
that contains more than two dummy edges has a larger weight.
Moreover, this LWP connects at least one non-dummy vertex. As
a result, each of the later concatenated LWPs contains only one
dummy edge and one (newly connected) dummy vertex, which is
a leaf, since any path that contains more than one dummy edge
would have a larger weight. Thus, all dummy vertices are leaves of
the Steiner tree found by LANCET. Based on this fact, exENSteiner
removes dummy vertices and edges from Θ𝑡 , and produces a feasi-
ble solution to the group Steiner tree problem in 𝐺 : Θ (Line 3). It
returns the MST that spans the vertices in Θ (Line 4).
Example of exENSteiner. Consider the example in Section 3.1 (i.e.,
Figure 2). First, exENSteiner transforms𝐺 and Γ to𝐺𝑡 and𝑇𝑡 . Then,
it employs LANCET to find the highlighted red tree in 𝐺𝑡 as Θ𝑡

(details in Section 3.2). It removes dummy vertices and edges from
Θ𝑡 , and gets the highlighted red tree in 𝐺 as Θ. It returns this tree.
Time complexity of exENSteiner:

𝑂
(
|Γ | · (|𝐸 | + |𝑉 | log |𝑉 | + |Γ | log |Γ | + |Γ | |𝑉 |)

)
.

The details of this time complexity are also in the supplement [6].

4 THREE (|Γ | − 1)-APPROXIMATION
ALGORITHMS

The above exENSteiner has no approximation guarantee for finding
group Steiner trees. To address this issue, here, we develop three
(|Γ | − 1)-approximation algorithms. First, in Section 4.1, we extend
an existing algorithm that is for vertex-unweighted graphs. Our
extension is dubbed exIhlerA. Since exIhlerA is too slowwhen |𝑔𝑚𝑖𝑛 |
is large, we propose a fast algorithm, dubbed FastAPP, in Section 4.2.
FastAPP does not dominate exENSteiner or exIhlerA on practical
solution qualities. Thus, in Section 4.3, we propose an improved
algorithm, dubbed ImprovAPP, that dominates the above algorithms
on practical solution qualities, and scales well in practice.

4.1 An extended (|Γ | − 1)-approximation
algorithm

Here, we extend the (|Γ |−1)-approximation algorithm in [25], which
we refer to as IhlerA. Our extension is dubbed exIhlerA.
Description of exIhlerA. Algorithm 3 shows the pseudo code of
exIhlerA. It initializes an empty graph𝐺𝑚𝑖𝑛 , and sets 𝑐𝜆 (𝐺𝑚𝑖𝑛) = ∞

1140

Algorithm 3 The exIhlerA algorithm
Input: a graph𝐺 (𝑉 , 𝐸,𝑤, 𝑐), a set of vertex groups Γ, a regulating
weight 𝜆
Output: a group Steiner tree: Θ(𝑉Θ, 𝐸Θ)
1: Initialize 𝐺𝑚𝑖𝑛 = ∅; 𝑐𝜆 (𝐺𝑚𝑖𝑛) = ∞
2: Find the smallest group 𝑔𝑚𝑖𝑛 in Γ
3: for each vertex 𝑖 ∈ 𝑔𝑚𝑖𝑛 do
4: Find 𝐿𝑊𝑃𝜆𝑖𝑔 | ∀𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛

5: 𝐺𝑖 = ∪𝑔∈Γ\𝑔𝑚𝑖𝑛
𝐿𝑊𝑃𝜆𝑖𝑔

6: 𝐺𝑚𝑖𝑛 = min𝑐𝜆 {𝐺𝑚𝑖𝑛,𝐺𝑖 }
7: end for
8: Return Θ = 𝑀𝑆𝑇 (𝐺𝑚𝑖𝑛)

(Line 1). Then, it identifies the smallest group 𝑔𝑚𝑖𝑛 in Γ (Line 2),
and processes every vertex 𝑖 ∈ 𝑔𝑚𝑖𝑛 as follows (Lines 4-6):
(1) For every vertex group 𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛 , find the regulated lowest

weight path between 𝑖 and 𝑔: 𝐿𝑊𝑃𝜆𝑖𝑔 (𝑉𝜆𝑖𝑔, 𝐸𝜆𝑖𝑔), i.e., the sim-
ple path that contains 𝑖 and at least one vertex in 𝑔, and the
regulated weight of this path, namely,
𝑐𝜆 (𝐿𝑊𝑃𝜆𝑖𝑔) = (1 − 𝜆)∑𝑣∈𝑉𝜆𝑖𝑔 𝑤 (𝑣) + 𝜆

∑
𝑒∈𝐸𝜆𝑖𝑔 𝑐 (𝑒), (4)

is minimized. Such paths can be found by invoking Dijkstra’s al-
gorithm to find non-regulated lowest weight paths (see Section
3.2) in 𝐺 ′′(𝑉 , 𝐸, (1 − 𝜆)𝑤, 𝜆𝑐).

(2) Combine 𝐿𝑊𝑃𝜆𝑖𝑔 for every 𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛 to form a graph 𝐺𝑖 .
(3) If the regulated weight of 𝐺𝑚𝑖𝑛 is larger than that of 𝐺𝑖 , then

update 𝐺𝑚𝑖𝑛 to 𝐺𝑖 .
After processing all the vertices in 𝑔𝑚𝑖𝑛 , the algorithm returns the
MST that spans the vertices in 𝐺𝑚𝑖𝑛 (Line 8).
Example of exIhlerA. We use𝐺 in Figure 2 as an example (details in
Section 3.1). Suppose that exIhlerA selects 𝑔2 = {𝑣3} as 𝑔𝑚𝑖𝑛 . Then,
Γ \ 𝑔𝑚𝑖𝑛 contains 𝑔1 and 𝑔3. 𝐿𝑊𝑃𝜆𝑣3𝑔1 is the path {𝑣3 → 𝑣4 → 𝑣2},
and 𝐿𝑊𝑃𝜆𝑣3𝑔3 is the path {𝑣3 → 𝑣4 → 𝑣5}. exIhlerA combines these
two paths as 𝐺𝑣3 , which is the highlighted red tree in 𝐺 . exIhlerA
updates 𝐺𝑚𝑖𝑛 to be this tree. It returns this tree.
Approximation guarantee of exIhlerA. The difference between
IhlerA [25] and exIhlerA is that IhlerA combines shortest paths in
Line 5 for finding vertex-unweighted group Steiner trees, while
exIhlerA combines LWPs for finding vertex- and edge-weighted
group Steiner trees. Like IhlerA, exIhlerA has a guarantee of |Γ | − 1.
The proof is in the supplement [6].

Theorem 3. exIhlerA has a sharp approximation guarantee of
|Γ | − 1 for solving Problem 1.

Time complexity of exIhlerA:

𝑂
(
|𝑔𝑚𝑖𝑛 | · (|𝐸 | + |𝑉 | log |𝑉 | + |Γ | |𝑉 |)

)
.

First, it initializes 𝐺𝑚𝑖𝑛 in 𝑂 (1) time. It identifies 𝑔𝑚𝑖𝑛 (Line 2) at
a cost of 𝑂 (|Γ |). For each 𝑖 ∈ 𝑔𝑚𝑖𝑛 , it finds the regulated lowest
weight path between 𝑖 and each vertex group in Γ \𝑔𝑚𝑖𝑛 (Line 4) in
𝑂 (|𝐸 | + |𝑉 | log |𝑉 | + |Γ | |𝑉 |) time (by first using Dijkstra’s algorithm
to find the regulated LWPs from 𝑖 to all vertices, and then evaluating
the regulated LWPs from 𝑖 to each vertex in each vertex group in
Γ \ 𝑔𝑚𝑖𝑛). It combines LWPs as 𝐺𝑖 (Line 5) in 𝑂 (|Γ | |𝑉 |) time. It
updates 𝐺𝑚𝑖𝑛 (Line 6) at a cost of 𝑂 (|𝑉 | + |𝐸 |). After the loop, it
derives the MST (Line 8) in 𝑂 (|𝐸 | + |𝑉 | log |𝑉 |) time [35].

Algorithm 4 The FastAPP algorithm
Input: a graph𝐺 (𝑉 , 𝐸,𝑤, 𝑐), a set of vertex groups Γ, a regulating
weight 𝜆
Output: a group Steiner tree: Θ(𝑉Θ, 𝐸Θ)
1: Find the smallest group 𝑔𝑚𝑖𝑛 in Γ
2: Find and store 𝐿𝑊𝑃𝜆𝑖𝑔 | ∀𝑖 ∈ 𝑉 ,𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛

3: Initialize 𝑖𝑚𝑖𝑛 = ∅; 𝑐𝑜𝑠𝑡 (𝑖𝑚𝑖𝑛) = ∞
4: for each vertex 𝑖 ∈ 𝑔𝑚𝑖𝑛 do
5: if 𝑐𝑜𝑠𝑡 (𝑖𝑚𝑖𝑛) > max{𝑐𝜆 (𝐿𝑊𝑃𝜆𝑖𝑔) | ∀𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛} then
6: 𝑖𝑚𝑖𝑛 = 𝑖
7: 𝑐𝑜𝑠𝑡 (𝑖𝑚𝑖𝑛) = max{𝑐𝜆 (𝐿𝑊𝑃𝜆𝑖𝑔) | ∀𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛}
8: end if
9: end for
10: 𝐺𝑚𝑖𝑛 = ∪𝑔∈Γ\𝑔𝑚𝑖𝑛

𝐿𝑊𝑃𝜆𝑖𝑚𝑖𝑛𝑔
11: Return Θ = 𝑀𝑆𝑇 (𝐺𝑚𝑖𝑛)

4.2 A fast (|Γ | − 1)-approximation algorithm
The above exIhlerA is too slow to be implemented when |𝑔𝑚𝑖𝑛 | is
large. To address this issue, here, we propose FastAPP, which uses
a different approximation approach from exIhlerA.

First, recall that the regulated lowest weight path between a ver-
tex 𝑖 and a vertex group 𝑔, namely, 𝐿𝑊𝑃𝜆𝑖𝑔 (𝑉𝜆𝑖𝑔, 𝐸𝜆𝑖𝑔), is a simple
path that contains 𝑖 and at least one vertex in 𝑔, and the regulated
weight of this path (see Equation (4)) is minimized. We observe that
the regulated lowest weight paths between 𝑔 and every vertex can
be found in 𝑂 (|𝐸 | + |𝑉 | log |𝑉 |) time via the following two steps.
First, add a dummy vertex 𝑣𝑔 into 𝑉 , such that𝑤 (𝑣𝑔) = 0, and add
dummy edges (𝑣𝑔, 𝑗) for all 𝑗 ∈ 𝑔 into 𝐸, such that 𝑐 (𝑣𝑔, 𝑗) = 0.
Second, use Dijkstra’s algorithm to find the non-regulated lowest
weight paths (see Section 3.2) between 𝑣𝑔 and the other vertices
in 𝐺 ′′(𝑉 , 𝐸, (1 − 𝜆)𝑤, 𝜆𝑐). These paths correspond to the regulated
lowest weight paths between 𝑔 and every vertex in 𝐺 .

Unlike exIhlerA that employs Dijkstra’s algorithm |𝑔𝑚𝑖𝑛 | times,
we can employ Dijkstra’s algorithm |Γ | − 1 times to find 𝐿𝑊𝑃𝜆𝑖𝑔
between every 𝑖 ∈ 𝑉 and every 𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛 for achieving the
guarantee of |Γ | − 1. However, this change is not enough for com-
pletely removing |𝑔𝑚𝑖𝑛 | from the time complexity of exIhlerA, due
to the cost of𝑂 (|𝑔𝑚𝑖𝑛 | · |Γ | |𝑉 |) for building𝐺𝑖 in Line 5 of exIhlerA.
FastAPP completely removes |𝑔𝑚𝑖𝑛 | from its time complexity by
using a different approximation approach from exIhlerA and the
previous work [25]. In particular, FastAPP does not build𝐺𝑖 when
enumerating 𝑖 ∈ 𝑔𝑚𝑖𝑛 . Instead, it finds 𝑖 ∈ 𝑔𝑚𝑖𝑛 that minimizes the
maximum regulated weight of the regulated lowest weight paths
between 𝑖 and each vertex group in Γ \ 𝑔𝑚𝑖𝑛 .
Description of FastAPP. Algorithm 4 shows the pseudo code of
FastAPP. First, it finds 𝑔𝑚𝑖𝑛 in Γ (Line 1). Then, it finds and stores
𝐿𝑊𝑃𝜆𝑖𝑔 (as well as 𝑐𝜆 (𝐿𝑊𝑃𝜆𝑖𝑔)) between every vertex 𝑖 ∈ 𝑉 and
every vertex group 𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛 (Line 2). It initializes a vertex 𝑖𝑚𝑖𝑛 ,
and considers the cost of 𝑖𝑚𝑖𝑛 as infinity (Line 3). It processes every
vertex 𝑖 ∈ 𝑔𝑚𝑖𝑛 as follows (Lines 5-8). If the cost of 𝑖𝑚𝑖𝑛 is larger
than the maximum regulated weight of 𝐿𝑊𝑃𝜆𝑖𝑔 for all 𝑔 ∈ Γ \𝑔𝑚𝑖𝑛

(Line 5), then it updates 𝑖𝑚𝑖𝑛 to 𝑖 (Line 6), and updates the cost of
𝑖𝑚𝑖𝑛 to this maximum weight (Line 7). After the loop, it combines
𝐿𝑊𝑃𝜆𝑖𝑚𝑖𝑛𝑔 for every 𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛 to form a graph 𝐺𝑚𝑖𝑛 (Line 10).
It returns the MST that spans the vertices in 𝐺𝑚𝑖𝑛 (Line 11).

1141

Example of FastAPP. Consider 𝐺 in Figure 2 (details in Section
3.1). Suppose that FastAPP selects 𝑔2 as 𝑔𝑚𝑖𝑛 . It processes 𝑣3 ∈ 𝑔𝑚𝑖𝑛

as follows. 𝐿𝑊𝑃𝜆𝑣3𝑔1 is the path {𝑣3 → 𝑣4 → 𝑣2}, and 𝐿𝑊𝑃𝜆𝑣3𝑔3
is the path {𝑣3 → 𝑣4 → 𝑣5}. Suppose that 𝜆 ≠ 0. Then, it calcu-
lates max{𝑐𝜆 (𝐿𝑊𝑃𝜆𝑣3𝑔) | ∀𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛} as 𝑐𝜆 (𝐿𝑊𝑃𝜆𝑣3𝑔3), and up-
dates 𝑖𝑚𝑖𝑛 to 𝑣3. It builds𝐺𝑚𝑖𝑛 by merging 𝐿𝑊𝑃𝜆𝑣3𝑔1 and 𝐿𝑊𝑃𝜆𝑣3𝑔3 ,
which induces the highlighted red tree in 𝐺 . It returns this tree.
Approximation guarantee of FastAPP. Like exIhlerA, FastAPP
has a guarantee of |Γ | − 1. The proof is in the supplement [6].

Theorem 4. FastAPP has a sharp approximation guarantee of
|Γ | − 1 for solving Problem 1.

Time complexity of FastAPP:

𝑂
(
|Γ | · (|𝐸 | + |𝑉 | log |𝑉 |)

)
.

First, the algorithm finds 𝑔𝑚𝑖𝑛 (Line 1) at a cost of 𝑂 (|Γ |). Then,
it finds and stores the regulated lowest weight paths (Line 2) in
𝑂 (|Γ | (|𝐸 | + |𝑉 | log |𝑉 |)) time. It initializes 𝑖𝑚𝑖𝑛 (Line 3) in 𝑂 (1)
time. Subsequently, it conducts a loop with |𝑔𝑚𝑖𝑛 | iterations (Line
4). In each iteration, it findsmax{𝑐𝜆 (𝐿𝑊𝑃𝜆𝑖𝑔) | ∀𝑔 ∈ Γ \𝑔𝑚𝑖𝑛} from
the pre-stored information in Line 2 in 𝑂 (|Γ |) time. As a result,
the time complexity of updating 𝑖𝑚𝑖𝑛 (Lines 5-8) is 𝑂 (|Γ |). Since
|𝑔𝑚𝑖𝑛 | ≤ |𝑉 |, it conducts the above loop in 𝑂 (|Γ | |𝑉 |) time. After
the loop, it builds 𝐺𝑚𝑖𝑛 (Line 10) in 𝑂 (|Γ | |𝑉 |) time. Then, it finds
and returns an MST (Line 11) in 𝑂 (|𝐸 | + |𝑉 | log |𝑉 |) time.

4.3 An improved (|Γ | − 1)-approximation
algorithm

The above FastAPP does not dominate the extended algorithms on
practical solution qualities. Here, we develop ImprovAPP, which
dominates the above algorithms on practical solution qualities,
while having a high efficiency in practice. The main difference
between ImprovAPP and the above two (|Γ | − 1)-approximation
algorithms is that, when processing each 𝑖 ∈ 𝑔𝑚𝑖𝑛 , ImprovAPP
constructs a feasible solution tree by concatenating lowest weight
paths in a similar way with LANCET.
Description of ImprovAPP. Algorithm 5 shows the pseudo code
of ImprovAPP. First, it finds 𝑔𝑚𝑖𝑛 in Γ (Line 1). Then, it finds and
stores 𝐿𝑊𝑃𝜆𝑖𝑔 between every 𝑖 ∈ 𝑉 and every 𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛 (Line
2). It initializes an empty tree Θ𝑚𝑖𝑛 , and considers 𝑐𝜆 (Θ𝑚𝑖𝑛) = ∞
(Line 3). It processes every 𝑖 ∈ 𝑔𝑚𝑖𝑛 as follows (Lines 5-14).

It produces a feasible solution tree through a concatenation pro-
cess similar to LANCET (Lines 5-13). In particular, it initializes (Line
5) the set of connected vertices: 𝑉𝑐 = {𝑖}; the set of unconnected
vertex groups: Γ𝑢𝑐 = Γ \ 𝑔𝑚𝑖𝑛 ; an empty tree Θ𝑖 ; and an empty
min Fibonacci heap𝑄 . It pushes into𝑄 the regulated lowest weight
paths between each unconnected vertex group and 𝑖 , with the reg-
ulated weights of these paths as priorities (Line 6). It iteratively
pops out the top entry 𝐿𝑊𝑃𝜆𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 in𝑄 (Lines 7-8), and processes
𝐿𝑊𝑃𝜆𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 as follows (Lines 9-12). It merges 𝐿𝑊𝑃𝜆𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 into
Θ𝑖 (Line 9), and updates 𝑉𝑐 and Γ𝑢𝑐 (Lines 10-11). For every newly
connected vertex 𝑗 and every unconnected vertex group 𝑔 ∈ Γ𝑢𝑐 , it
identifies 𝐿𝑊𝑃𝜆𝑗𝑔 . Let 𝐿𝑊𝑃∗𝑔 be the path in 𝑄 that connects 𝑔. If
the regulated weight of 𝐿𝑊𝑃𝜆𝑗𝑔 is smaller than that of 𝐿𝑊𝑃∗𝑔 , then
it updates 𝐿𝑊𝑃∗𝑔 to 𝐿𝑊𝑃𝜆𝑗𝑔 in 𝑄 (Line 12). It iterates this process
until Γ𝑢𝑐 is empty. Then, Θ𝑖 becomes a feasible solution tree. It

Algorithm 5 The ImprovAPP algorithm
Input: a graph𝐺 (𝑉 , 𝐸,𝑤, 𝑐), a set of vertex groups Γ, a regulating
weight 𝜆
Output: a group Steiner tree: Θ(𝑉Θ, 𝐸Θ)
1: Find the smallest group 𝑔𝑚𝑖𝑛 in Γ
2: Find and store 𝐿𝑊𝑃𝜆𝑖𝑔 | ∀𝑖 ∈ 𝑉 ,𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛

3: Initialize Θ𝑚𝑖𝑛 = ∅; 𝑐𝜆 (Θ𝑚𝑖𝑛) = ∞
4: for each vertex 𝑖 ∈ 𝑔𝑚𝑖𝑛 do
5: Initialize 𝑉𝑐 = {𝑖}, Γ𝑢𝑐 = Γ \ 𝑔𝑚𝑖𝑛 , Θ𝑖 = 𝑄 = ∅
6: 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑄, 𝐿𝑊𝑃𝜆𝑖𝑔) | ∀𝑔 ∈ Γ𝑢𝑐
7: while Γ𝑢𝑐 ≠ ∅ do
8: 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 (𝑄, 𝐿𝑊𝑃𝜆𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 (𝑉𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 , 𝐸𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝))
9: Θ𝑖 = Θ𝑖 ∪ 𝐿𝑊𝑃𝜆𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 (𝑉𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 , 𝐸𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝)
10: 𝑉𝑐 = 𝑉𝑐 ∪𝑉𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝
11: Γ𝑢𝑐 = Γ𝑢𝑐 \ 𝑔𝑡𝑜𝑝
12: 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑄, 𝐿𝑊𝑃∗𝑔) | ∀𝑔 ∈ Γ𝑢𝑐
13: end while
14: Θ𝑚𝑖𝑛 = min𝑐𝜆 {Θ𝑚𝑖𝑛,Θ𝑖 }
15: end for
16: Θ𝑚𝑖𝑛 = 𝑀𝑆𝑇 (Θ𝑚𝑖𝑛)
17: Initialize 𝑄𝑚𝑎𝑥 = ∅
18: for each non-unique-group leaf 𝑣 of Θ𝑚𝑖𝑛 do
19: 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑄𝑚𝑎𝑥 , 𝑣)
20: end for
21: while 𝑄𝑚𝑎𝑥 ≠ ∅ do
22: 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 (𝑄𝑚𝑎𝑥 , 𝑣𝑡𝑜𝑝)
23: if 𝑣𝑡𝑜𝑝 is a non-unique-group leaf then
24: Θ𝑚𝑖𝑛 = Θ𝑚𝑖𝑛 \ (𝑣𝑡𝑜𝑝 , 𝑣𝑡𝑜𝑝𝑎𝑑 𝑗)
25: if 𝑣𝑡𝑜𝑝𝑎𝑑 𝑗 is a non-unique-group leaf then
26: 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑄𝑚𝑎𝑥 , 𝑣𝑡𝑜𝑝𝑎𝑑 𝑗)
27: end if
28: end if
29: end while
30: Return Θ = Θ𝑚𝑖𝑛

uses Θ𝑖 to update Θ𝑚𝑖𝑛 (Line 14). After enumerating all vertices in
𝑔𝑚𝑖𝑛 , Θ𝑚𝑖𝑛 becomes a feasible solution tree. It is not guaranteed
that Θ𝑚𝑖𝑛 is an MST that spans the vertices in Θ𝑚𝑖𝑛 (we provide
an example in the supplement [6]). Thus, it updates Θ𝑚𝑖𝑛 to be an
MST that spans the vertices in Θ𝑚𝑖𝑛 (Line 16). It proceeds to refine
Θ𝑚𝑖𝑛 (Lines 17-29) as follows.

The refinement of Θ𝑚𝑖𝑛 is based on the concept of unique-group
leaves. To explain, observe that in an optimal solution, every leaf
is contained by one or more groups, one of which must be unique
in the sense that this leaf does not share this group with any other
vertex in the optimal solution. Otherwise, we could remove this leaf
from the optimal solution to obtain another feasible solution with
a smaller weight. In a solution, we refer to a leaf with at least one
unique group as a unique-group leaf of this solution. Meanwhile, it is
not guaranteed that all leaves ofΘ𝑚𝑖𝑛 are such unique-group leaves
(we provide an example in the supplement [6]). Motivated by this,
ImprovAPP removes non-unique-group leaves fromΘ𝑚𝑖𝑛 as follows
(Lines 17-29). First, it initializes amax Fibonacci heap [18]𝑄𝑚𝑎𝑥 = ∅
(Line 17). For each non-unique-group leaf 𝑣 ofΘ𝑚𝑖𝑛 , it pushes 𝑣 into
𝑄𝑚𝑎𝑥 with a priority of (1 − 𝜆)𝑤 (𝑣) + 𝜆𝑐 (𝑣, 𝑣𝑎𝑑 𝑗) (Line 19), where

1142

𝑣𝑎𝑑 𝑗 is the adjacent vertex of 𝑣 inΘ𝑚𝑖𝑛 . Then, it iteratively pops the
top entry 𝑣𝑡𝑜𝑝 from𝑄𝑚𝑎𝑥 (Lines 21-22), and checks whether 𝑣𝑡𝑜𝑝 is
a non-unique-group leaf (because a non-unique-group leaf in𝑄𝑚𝑎𝑥

could become a unique-group leaf after other leaves are removed
from Θ𝑚𝑖𝑛 in preceding iterations). If 𝑣𝑡𝑜𝑝 is a non-unique-group
leaf (Line 23), it removes the edge (𝑣𝑡𝑜𝑝 , 𝑣𝑡𝑜𝑝𝑎𝑑 𝑗) from Θ𝑚𝑖𝑛 (Line
24), where 𝑣𝑡𝑜𝑝𝑎𝑑 𝑗 is the adjacent vertex of 𝑣𝑡𝑜𝑝 in Θ𝑚𝑖𝑛 . After
this removal, 𝑣𝑡𝑜𝑝𝑎𝑑 𝑗 may become a non-unique-group leaf. In this
case, ImprovAPP pushes 𝑣𝑡𝑜𝑝𝑎𝑑 𝑗 into𝑄𝑚𝑎𝑥 (Line 26). This iteration
process ends when 𝑄𝑚𝑎𝑥 becomes empty. After this refinement, it
returns Θ𝑚𝑖𝑛 (Line 30).
Example of ImprovAPP. Consider𝐺 in Figure 2 (details in Section
3.1). If ImprovAPP selects 𝑔2 as 𝑔𝑚𝑖𝑛 , then it processes 𝑣3 ∈ 𝑔𝑚𝑖𝑛

as follows. It initializes Θ𝑣3 as empty. 𝐿𝑊𝑃𝜆𝑣3𝑔1 is the path {𝑣3 →
𝑣4 → 𝑣2}, and 𝐿𝑊𝑃𝜆𝑣3𝑔3 is the path {𝑣3 → 𝑣4 → 𝑣5}. It pushes
these two paths into 𝑄 . It merges 𝐿𝑊𝑃𝜆𝑣3𝑔1 into Θ𝑣3 . Then, it up-
dates 𝐿𝑊𝑃∗𝑔3 in𝑄 as the path {𝑣4 → 𝑣5}, and merges this path into
Θ𝑣3 . The resulting Θ𝑣3 is the highlighted red tree in 𝐺 . It updates
Θ𝑚𝑖𝑛 to be this tree. It returns this tree.
Approximation guarantee of ImprovAPP. ImprovAPP keeps the
guarantee of |Γ | − 1. We put the proof in the supplement [6].

Theorem 5. ImprovAPP has a sharp approximation guarantee of
|Γ | − 1 for solving Problem 1.

Time complexity of ImprovAPP:

𝑂
(
|Γ | ·

(
|𝐸 | + |𝑉 | log |𝑉 | + |𝑔𝑚𝑖𝑛 | · (|𝑉 | + log |Γ |)

))
.

First, it finds 𝑔𝑚𝑖𝑛 (Line 1) at a cost of 𝑂 (|Γ |). Then, it finds
𝐿𝑊𝑃𝜆𝑖𝑔 between every 𝑖 ∈ 𝑉 and every 𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛 (Line 2) in
𝑂 (|Γ | (|𝐸 |+|𝑉 | log |𝑉 |)) time. It initializesΘ𝑚𝑖𝑛 (Line 3) in𝑂 (1) time.
It conducts a for loop with |𝑔𝑚𝑖𝑛 | iterations (Line 4). In each itera-
tion, it does the initialization (Line 5) in𝑂 (|Γ |) time. It takes𝑂 (|Γ |)
time to push the lowest weight paths into 𝑄 (Line 6). Then, it con-
catenates lowest weight paths using a while loop with 𝑂 (|Γ |) itera-
tions (Lines 7-13) as follows. It pops out 𝐿𝑊𝑃𝜆𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 in𝑂 (log |Γ |)
time (Line 8). It merges 𝐿𝑊𝑃𝜆𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 into Θ𝑖 and updates 𝑉𝑐 and
Γ𝑢𝑐 (Lines 9-11), which takes𝑂 (|𝑉 | + |Γ |) time throughout the while
loop. Since the cost of decreasing the key of an element in a min
Fibonacci heap is𝑂 (1), updating the lowest weight paths in𝑄 (Line
12) takes𝑂 (|Γ | |𝑉 |) time throughout the while loop. It updatesΘ𝑚𝑖𝑛

usingΘ𝑖 (Line 14) in𝑂 (|𝑉 |) time. After enumerating every 𝑖 ∈ 𝑔𝑚𝑖𝑛 ,
it identifies the MST (Line 16) in 𝑂 (|𝐸 | + |𝑉 | log |𝑉 |) time [35].

Then, it refines Θ𝑚𝑖𝑛 (Lines 17-29). We use a hash to record, for
each vertex 𝑣 in Θ𝑚𝑖𝑛 , the groups in Γ that 𝑣 belongs to. In addition,
we use a hash to record the number of vertices in Θ𝑚𝑖𝑛 that is
in each group. The construction of these hashes takes 𝑂 (|Γ | |𝑉 |)
time. Since it takes 𝑂 (|Γ |) time to check whether a leaf is a non-
unique-group leaf (by examining the number of vertices in Θ𝑚𝑖𝑛

that are in each group that this leaf belongs to), ImprovAPP pushes
non-unique-group leaves into𝑄𝑚𝑎𝑥 (Lines 18-20) in𝑂 (|Γ | |𝑉 |) time.
Then, the removal of each non-unique-group leaf from Θ𝑚𝑖𝑛 (Lines
22-28) takes𝑂 (|Γ | + log |𝑉 |) time. The reason is as follows. Popping
the top entry from 𝑄𝑚𝑎𝑥 (Line 22) takes 𝑂 (log |𝑉 |) time. Checking
whether 𝑣𝑡𝑜𝑝 is a non-unique-group leaf (Line 23) incurs 𝑂 (|Γ |)
cost. If 𝑣𝑡𝑜𝑝 is a non-unique-group leaf, it takes𝑂 (1) time to remove
𝑣𝑡𝑜𝑝 from Θ𝑚𝑖𝑛 (Line 24). After that, it takes𝑂 (|Γ |) time to check if
the neighbor of 𝑣𝑡𝑜𝑝 in Θ𝑚𝑖𝑛 is a non-unique-group leaf (Line 25),

Algorithm 6 The PartialOPT algorithm
Input: a graph𝐺 (𝑉 , 𝐸,𝑤, 𝑐), a set of vertex groups Γ, a regulating
weight 𝜆, a tunable parameter ℎ ∈ [2, |Γ |]
Output: a group Steiner tree: Θ(𝑉Θ, 𝐸Θ)
1: Initialize Θ = ∅; 𝑐𝜆 (Θ) = ∞
2: Find the smallest vertex group 𝑔𝑚𝑖𝑛 in Γ
3: for each vertex 𝑖 ∈ 𝑔𝑚𝑖𝑛 do
4: Let Γ1 be a set of vertex groups that contains {𝑖} and the

first ℎ − 1 vertex groups in Γ \ 𝑔𝑚𝑖𝑛 ;
let Γ2 be another set of vertex groups that contains {𝑖} and
the last |Γ | − ℎ vertex groups in Γ \ 𝑔𝑚𝑖𝑛

5: Θℎ
𝑖 = 𝐷𝑃𝐵𝐹 (𝐺, Γ1, 𝜆)

6: if Γ2 = {{𝑖}} then
7: Θ

|Γ |
𝑖 = {𝑖}

8: else
9: Θ

|Γ |
𝑖 = 𝑒𝑥𝐼ℎ𝑙𝑒𝑟𝐴(𝐺, Γ2, 𝜆)

10: end if
11: 𝐺𝑖 = Θℎ

𝑖 ∪ Θ
|Γ |
𝑖

12: Θ𝑖 = 𝑀𝑆𝑇 (𝐺𝑖)
13: Execute Lines 17-29 in ImprovAPP to refine Θ𝑖

14: Θ = min𝑐𝜆 {Θ,Θ𝑖 }
15: end for
16: Return Θ

and if it is, then ImprovAPP inserts it into 𝑄𝑚𝑎𝑥 (Line 26) in 𝑂 (1)
time. Thus, the total cost of Lines 17-29 is 𝑂 (|Γ | |𝑉 | + |𝑉 | log |𝑉 |).

5 A (|Γ | − ℎ + 1)-APPROXIMATION
ALGORITHM

Here, we present PartialOPT, which achieves a guarantee of |Γ |−ℎ+
1, where ℎ ∈ [2, |Γ |] is a tunable parameter. The main idea behind
PartialOPT is similar to the idea of the (|Γ | − ℎ + 1)-approximation
algorithm in [25] for solving the vertex-unweighted group Steiner
tree problem. The idea is: when enumerating every vertex 𝑖 ∈ 𝑔𝑚𝑖𝑛 ,
find a tree to connect 𝑖 withℎ−1 vertex groups in Γ\𝑔𝑚𝑖𝑛 optimally,
and find another tree to connect 𝑖 with the other |Γ |−ℎ vertex groups
in Γ \𝑔𝑚𝑖𝑛 sub-optimally using a (|Γ | −1)-approximation algorithm,
and then combines these two trees as a solution.

However, the (|Γ | − ℎ + 1)-approximation algorithm in [25] has
a large time complexity of 𝑂 (3ℎ · |𝑉 |ℎ+3), and is too slow to be
used. The reason is that, when finding a tree to connect 𝑖 with
ℎ − 1 vertex groups optimally, it enumerates𝑂 (|𝑉 |ℎ−1) sets of ℎ − 1
vertices such that every set covers the ℎ − 1 vertex groups, and for
every set, it uses an exact Steiner tree algorithm in [15] to find the
minimum-weight tree that connects 𝑖 with this set of vertices.

In comparison, PartialOPT has a smaller time complexity, since
PartialOPT employs an exact group Steiner tree algorithm in [14]
to connect 𝑖 with ℎ − 1 vertex groups optimally.
Description of PartialOPT. Algorithm 6 shows the pseudo code of
PartialOPT. It first initializes an empty tree Θ, and sets 𝑐𝜆 (Θ) = ∞
(Line 1). Then, it identifies 𝑔𝑚𝑖𝑛 ∈ Γ (Line 2), and processes each
vertex 𝑖 in 𝑔𝑚𝑖𝑛 (Lines 4-14) in seven steps:
(1) Construct a set Γ1 of vertex groups that contains {𝑖} and the

firstℎ−1 vertex groups in Γ\𝑔𝑚𝑖𝑛 , and a set Γ2 of vertex groups
that contains {𝑖} and the last |Γ | − ℎ vertex groups in Γ \ 𝑔𝑚𝑖𝑛 .

1143

(2) InvokeDPBF [14] to derive an optimal solutionΘℎ
𝑖 to the group

Steiner tree problem with Γ1 being the set of vertex groups.
(3) If Γ2 = {{𝑖}}, then let Θ |Γ |

𝑖 = {𝑖}. Otherwise, execute exIhlerA
to compute Θ |Γ |

𝑖 with Γ2 being the set of vertex groups. The rea-
son why we use exIhlerA, but not FastAPP or ImprovAPP, here
is that exIhlerA incurs a smaller time complexity here. In par-
ticular, since Γ2 contains {𝑖}, exIhlerA incurs a time complexity
of 𝑂 ((|Γ | − ℎ) |𝑉 | + |𝐸 | + |𝑉 | log |𝑉 |) here.

(4) Merge Θℎ
𝑖 and Θ

|Γ |
𝑖 to form a graph 𝐺𝑖 .

(5) Derive the MST, Θ𝑖 , that spans the vertices in 𝐺𝑖 .
(6) Refine Θ𝑖 using Lines 17-29 in ImprovAPP.
(7) If Θ𝑖 has a smaller regulated weight than Θ, then let Θ = Θ𝑖 .
After the enumeration, PartialOPT returns Θ.
Example of PartialOPT. Take 𝐺 in Figure 2 as an example. Let
ℎ = 2. If PartialOPT selects 𝑔2 as 𝑔𝑚𝑖𝑛 , then it processes 𝑣3 ∈ 𝑔𝑚𝑖𝑛

as follows. First, it builds Γ1 = {{𝑣3}, 𝑔1} and Γ2 = {{𝑣3}, 𝑔3}. It uses
DPBF to find Θℎ

𝑣3 = {(𝑣3, 𝑣4), (𝑣4, 𝑣2)}. Then, it uses exIhlerA to find
Θ
|Γ |
𝑣3 = {(𝑣3, 𝑣4), (𝑣4, 𝑣5)}. It merges Θℎ

𝑣3 and Θ
|Γ |
𝑣3 as 𝐺𝑣3 , which is

the highlighted red tree in 𝐺 . It returns this tree.
Approximation guarantee of PartialOPT. PartialOPT has the
following guarantee. The proof is in the supplement [6].

Theorem 6. PartialOPT has a sharp approximation guarantee of
|Γ | − ℎ + 1 for solving Problem 1.

Time complexity of PartialOPT:

𝑂
(
|𝑔𝑚𝑖𝑛 | ·

(
|Γ | |𝑉 | + 3ℎ |𝑉 | + 2ℎ (|𝐸 | + ℎ |𝑉 | + |𝑉 | log |𝑉 |)

))
.

The details of this time complexity are in the supplement [6].

6 RELATEDWORK
Group Steiner tree algorithms. Reich and Widmayer [36] first
study the vertex-unweighted group Steiner tree problem. Several
algorithms have been developed for solving this problem since then
(e.g., [14, 19, 24, 25, 28, 31]), in which ENSteiner [28] and IhlerA
[25] (i.e., the (|Γ | − 1)-approximation algorithm in [25]) are two
state-of-the-art scalable non-exact algorithms. The reason is that
the other algorithms either achieve tight (often poly-logarithmic)
approximation guarantees at the cost of large time complexities
(e.g., [19, 24]), or find optimal solutions via dynamic programming
approaches (e.g., [14, 31]). Ding et al. [14] further study the vertex-
and edge-weighted group Steiner tree problem. Their DPBF algo-
rithm can solve this problem to optimality. Recently, Li et al. [31]
develop some powerful pruning techniques to enhance the effi-
ciency of DPBF for solving the vertex-unweighted group Steiner
tree problem. Their Basic algorithm can solve the vertex- and edge-
weighted group Steiner tree problem to optimality as well. More
recently, Chalermsook et al. [8] study a special case of this problem
where (i) a root vertex in the optimal solution tree is known; and (ii)
all edge weights are zero. They point out that some recursive greedy
algorithms [9, 10, 24] lead to new algorithms that can achieve an
approximation guarantee of𝑂 (log2 |Γ |) for solving this special case.
Since these algorithms cannot achieve guarantees in polynomial
time, they further propose an algorithm that achieves a guarantee of
𝑂 (log |𝑉 | log |Γ |) in polynomial time when the treewidth of graph
is bounded. We can apply this algorithm to non-rooted graphs with

both vertex and edge weights by (i) enumerating all vertices as pos-
sible root vertices; and (ii) dividing every edge into two new edges
with a new vertex in the middle, and then giving new vertices the
weights of divided edges, while setting the weights of new edges
to zero. However, it is too slow to use this algorithm. Specifically,
this algorithm has a large time complexity of |𝑉 |�̃� (𝑡𝑤 (𝐺)2) , where
�̃� (𝑥) = 𝑂 (𝑥 · polylog(𝑥)), and 𝑡𝑤 (𝐺) is the treewidth of the in-
put graph 𝐺 , which often ranges from dozens to hundreds for real
graphs [34]. This motivates us to develop more practical algorithms
for finding vertex- and edge-weighted group Steiner trees.
Vertex- and edge-weighted Steiner tree algorithms. Klein and
Ravi [27] propose the first approximation algorithm for solving
the vertex- and edge-weighted Steiner tree problem. Their algo-
rithm has an approximation guarantee of 2 ln |𝑇𝑡 |. Guha and Khuller
[20] later improve Klein and Ravi’s algorithm, and their improve-
ment has an approximation guarantee of (1.35 + 𝜀) ln |𝑇𝑡 |, for any
constant 𝜀 > 0. Guha and Khuller point out that both Klein and
Ravi’s algorithm and their improvement are too slow to be imple-
mented in practice, since both algorithms repeatedly find a tree
that minimizes the ratio of the weight of this tree to the number of
compulsory vertices that this tree connects. Consequently, Guha
and Khuller [20] further propose an algorithm that has an approxi-
mation guarantee of 1.6103 ln |𝑇𝑡 |. This algorithm, which we refer
to as GKA, is a state-of-the-art algorithm for solving the vertex-
and edge-weighted Steiner tree problem, given that the more recent
work focuses on solving this problem in special graphs, such as
unit disk graphs [45], planar graphs [12], and graphs with compul-
sory leaf vertices [40]. We observe that, even though this algorithm
is faster than the other ones, it still does not scale well to large
graphs. Specifically, it requires finding the lowest weight paths
between all pairs of vertices, which induces a time complexity of
𝑂 (|𝑉𝑡 | · (|𝐸𝑡 | + |𝑉𝑡 | log |𝑉𝑡 |)). This motivates us to develop LANCET.

7 EXPERIMENTS
In this section, we conduct experiments on a computer with two
Intel Xeon Gold 6240 processors and 395 GB RAM1.

7.1 Datasets
We use three real datasets: Toronto, DBLP andMovieLens.
Toronto.We collect this dataset from the City of Toronto’s Open
Data Portal [5]. We use it to build the Toronto graph, where each
vertex represents a road junction, and each edge represents a road
segment. Each vertex is associated with the types of nearby facilities
(e.g., schools) and a value representing the nearby traffic count in
January 2020. Each edge is associated with a value representing
the length of the corresponding road segment. There are 46,073
vertices, 68,353 edges, and 35 types of facilities in total.

We use the nearby traffic count associated with vertex 𝑣 as the
weight of 𝑣 , and the road length associated with edge 𝑒 as the weight
of 𝑒 . We normalize all vertex and edge weights to the range of [0, 1].
We consider each vertex group in Γ as the set of vertices that are
associated with a specific type of facilities. In this case, finding a
group Steiner tree could be useful for property search, e.g., for a
user who wants to move to a region with low traffic noise and close
to a library, a tennis court, and a school.

1Our codes and datasets are at https://github.com/YahuiSun/GroupSteinerTree

1144

DBLP. It is the DBLP-Citation-network V12 dataset at the AMiner
website [1, 44].We use it to build theDBLP graph, where each vertex
represents an expert, and each edge between two vertices indicates
that the two corresponding experts have co-authored publication(s).
Each expert is associated with the number of citations that he or
she gets, and a set of research topics that his or her publications
are on. We refer to each topic as a skill. There are 2,497,782 vertices,
12,786,329 edges, and 127,726 research topics in total.

For vertex 𝑣 that represents an expert with 𝑥 citations, we use
ln(𝑥 + 1) as the weight of 𝑣 , and treat this weight as the hiring cost
of the expert. For each edge 𝑒 connecting two vertices 𝑢 and 𝑣 , we
follow previous work [39] and set the weight of 𝑒 as the pairwise
Jaccard distance 𝑐 (𝑒) = 1 − |𝑉𝑢∩𝑉𝑣 |

|𝑉𝑢∪𝑉𝑣 | , where 𝑉𝑢 and 𝑉𝑣 are the sets
of vertices adjacent to 𝑢 and 𝑣 , respectively. Such edge weights
represent distances between experts in the team formation scenario
[28, 32]. We normalize all vertex and edge weights to the range of
[0, 1]. We consider each vertex group in Γ as the set of vertices that
are associated with a specific skill. Then, finding a group Steiner
tree could help form a team of experts to perform a task.
MovieLens. It is the MovieLens 25M dataset at the GroupLens
website [3]. We use it to build the MovieLens graph, where each
vertex represents a movie. Each movie is associated with the genres
(e.g., comedy) that this movie belongs to and a number of rating
stars (1 to 5) that this movie gets from MovieLens users [4]. There
is an edge between two vertices if there are users who give both
corresponding movies 5 stars, which indicates that people who like
one of these two movies may also like the other one. There are
62,423 vertices, 35,323,774 edges, and 19 genres in total.

For vertex 𝑣 representing a movie that has an average star of 𝑥 ,
we use 5 − 𝑥 as the weight of 𝑣 , i.e., a small vertex weight indicates
that a movie is highly rated. For edge 𝑒 that connects two movies 𝑣
and𝑢, if there are𝑦 users who give both movies 5 stars, then we use
1
𝑦 as the weight of 𝑒 , i.e., a small edge weight indicates that people
are likely to like both movies at the same time. We normalize all
vertex and edge weights to the range of [0, 1]. We consider each
vertex group in Γ as the set of vertices that are associated with a
specific genre. Then, finding a group Steiner tree could be useful
for recommending movies that are related to some certain genres.

7.2 Experiment settings
Algorithms. Except the proposed algorithms, we also implement
six state-of-the-art algorithms as follows.
• GKA [20]: a (1.6103 ln |𝑇𝑡 |)-approximation algorithm for finding
vertex- and edge-weighted Steiner trees. The main idea of GKA
is to greedily merge spiders (i.e., trees having at most one vertex
of degree more than two) that contain compulsory vertices.

• DPBF [14]: a dynamic programming algorithm that finds opti-
mal vertex- and edge-weighted group Steiner trees and is widely
used for information retrieval in databases (e.g., [23, 29, 30]).
The main idea of DPBF is to build an optimal group Steiner tree
for covering |Γ | vertex groups by dynamically merging optimal
group Steiner trees for covering parts of these vertex groups.

• Basic [31]: another dynamic programming algorithm that can
find optimal vertex- and edge-weighted group Steiner trees. The
main idea of Basic is to first use the dynamically constructed
trees in DPBF to build feasible solutions as upper bounds of the

optimal solution, and then use these upper bounds to prune un-
profitable ones of the dynamically constructed trees. Basic can
progressively find sub-optimal solutions with quality guaran-
tees before finding optimal solutions.We utilize this progressive
nature, and let Basic return the first found solution such that
the regulated weight of this solution is guaranteed to be not
larger than 𝑟 times the optimal regulated weight, where 𝑟 ≥ 1
is a parameter. When 𝑟 = 1, Basic returns the optimal solution.
When 𝑟 > 1, Basic may not return the optimal solution.

• Basic+: an improvement of Basic. In particular, Basic+ uses the
one-label lower bound in [31] to enhance the pruning process of
Basic. Basic+ can also progressively find sub-optimal solutions
with quality guarantees before finding optimal ones. We also
use 𝑟 to decide the returned solution of Basic+.

• ENSteiner [28] and IhlerA [25]: the vertex-unweighted versions
of exENSteiner and exIhlerA, respectively.

Note that, we omit the algorithm in [8] since it incurs prohibitive
computational costs, as we have discussed in Section 6. Furthermore,
we observe that the PrunedDP and PrunedDP++ algorithms in [31]
improve DPBF for finding vertex-unweighted group Steiner trees.
In the supplement [6], we show that these two algorithms rely on
techniques that do not hold in graphs with vertex weights. Thus,
we do not implement these two algorithms here.
Parameters.We vary five parameters as follows.
• |𝑉 |: the number of vertices. We extract |𝑉 | vertices (and the
edges between these vertices) from the input data. In particular,
we first randomly select a vertex 𝑣 , and then perform a breadth
first search starting from 𝑣 and extract the first |𝑉 | vertices
encountered. Since the DBLP and MovieLens graphs are not
connected, the breadth first search starting from 𝑣 may not
encounter |𝑉 | vertices. In this case, we performmultiple breadth
first searches in the above way, until |𝑉 | vertices are extracted.

• |Γ |: the number of vertex groups. For Toronto (resp., DBLP
and MovieLens), a candidate vertex group is the set of vertices
that are associated with a specific facility type (resp., skill and
genre). We select |Γ | candidate vertex groups via two different
approaches as follows. First, the uniform approach: we select |Γ |
candidate vertex groups uniformly at random. Second, the non-
uniform approach: the probability of selecting candidate vertex
group 𝑔 is |𝑔 |∑

𝑔𝑥 ∈Γ𝑐𝑎𝑛 |𝑔𝑥 |
, where Γ𝑐𝑎𝑛 is the set of all candidate

vertex groups. That is to say, the probability of selecting 𝑔 is
in proportion to the size of 𝑔. This corresponds to the fact that
more common resources are often more frequently used (e.g.,
there are more machine learning researchers than Steiner tree
researchers, and there are also more tasks that require the skill
of machine learning than Steiner tree). Since the DBLP and
MovieLens graphs are not connected, there could be no feasible
solution for some Γ. We regenerate Γ when such a case occurs.

• 𝜆: the regulating constant between vertex and edge weights.
• 𝑟 : the parameter of Basic and Basic+ (details are above).
• ℎ: the parameter of PartialOPT.

Metrics. We evaluate three metrics as follows.
• 𝑐𝜆 (𝐺 ′): the objective value of Problem 1.
• 𝑐 (𝐺 ′

𝑡): the objective value of Problem 2.
• 𝑡 : the running time of algorithms.

1145

7.3 Experiment results
We visualize the experiment results in Figures 3-8. For each set of
parameters, we randomly generate 100 instances, and visualize the
average metric values for comparison.
The effectiveness of our extensions. exENSteiner and exIhlerA
extend the existing ENSteiner and IhlerA, respectively. We compare
these algorithms in Figure 3, where vertex groups are selected via
the uniform approach, and the parameter settings are: for Toronto,
|𝑉 | = 46073, |Γ | = 8, 𝜆 = 0.33; for DBLP, |𝑉 | = 2497782, |Γ | = 6,
𝜆 = 0.33; for MovieLens, |𝑉 | = 2423, |Γ | = 6, 𝜆 = 0.33. We ob-
serve that exENSteiner and exIhlerA produce better solutions than
ENSteiner and IhlerA, respectively (particularly for Toronto). The
reason is that exENSteiner and exIhlerA consider both vertex and
edge weights, while ENSteiner and IhlerA ignore vertex weights.
Note that, exENSteiner and exIhlerA are slightly slower than EN-
Steiner and IhlerA, respectively, since it is slightly slower to com-
pute lowest weight paths than to compute shortest paths, due to
the calculation of vertex weights. Nevertheless, it is reasonable to
conclude that exENSteiner and exIhlerA have similar speeds with
ENSteiner and IhlerA, respectively. Thus, exENSteiner and exIhlerA
are more effective than ENSteiner and IhlerA for finding vertex-
and edge-weighted group Steiner trees. Due to this reason, we do
not use ENSteiner and IhlerA in the following main experiments.
The main experiment results. We present the main experiment
results in Figures 4 and 5, where vertex groups are selected via the
uniform and non-uniform approaches, respectively. We report the
average |𝑔𝑚𝑖𝑛 | in these experiments in Figure 6. Note that, |𝑔𝑚𝑖𝑛 |
is larger when vertex groups are selected non-uniformly.
Evaluating exact algorithms.We use three exact algorithms: Basic,
Basic+ and DPBF. We observe that Basic+ is often faster than DPBF
for finding optimal solutions (e.g., Figures 4a-4c). In comparison,
Basic often has a similar speed with DPBF (e.g., Figure 4c). The
difference between Basic and Basic+ is that Basic+ uses the one-
label lower bound in [31] to enhance Basic. The above observation
shows the effectiveness of this lower bound. Nevertheless, DPBF
can be faster than Basic and Basic+ in some cases (e.g., when 𝜆 = 0
in Figures 4g, 5g, 5i). The reason is that Basic and Basic+ find
the lowest weight paths between vertices and vertex groups, and
construct feasible solutions progressively, while DPBF does not
find these paths or construct these feasible solutions.

Basic, Basic+ and DPBF are often faster when vertex groups are
selected non-uniformly. For example, these algorithms are faster in
Figure 5d than in Figure 4d. The reason is as follows. Let 𝑇 (𝑣, Γ′)
be the minimum-weight tree that roots at vertex 𝑣 ∈ 𝑉 and covers
all vertex groups in Γ′ ⊆ Γ. These algorithms enumerate 𝑇 (𝑣, Γ′)
for different pairs of 𝑣 and Γ′, in an increasing order of the weight
of 𝑇 (𝑣, Γ′), until an optimal solution is found. The sizes of non-
uniformly selected vertex groups are often larger, which means
that the optimal solution is often smaller and has a smaller weight,
and as a result these algorithms often find optimal solutions after
enumerating a smaller number of trees. Due to this reason, it is too
slow to use these algorithms when |𝑉 | is large in Figure 4b, where
vertex groups are selected uniformly. Similarly, we do not use these
algorithms to find optimal solutions in Figures 4e, 4h and 4k.

We note that Basic, Basic+ and DPBF do not scale well to |Γ |
(see Figures 4d, 4f, 5d-5f), since these algorithms have exponential

Figure 3: The effectiveness of our extensions.

time complexities with respect to |Γ |. As a result, in cases where
|Γ | is not small, it is often too slow to find optimal solutions, and
thus required to accept sub-optimal solutions.

Different from DPBF, Basic and Basic+ can find sub-optimal
solutions with quality guarantees progressively. We let Basic and
Basic+ return solutions with the guarantee of 𝑟 . We vary 𝑟 in Figures
4j-4l and 5j-5l. When 𝑟 = |Γ | − 1, Basic and Basic+ achieve the
same guarantee with ImprovAPP. Nevertheless, the solutions of
Basic and Basic+ are often worse than the solutions of ImprovAPP
when 𝑟 = |Γ | − 1 (e.g., Figures 4j, 4l, and 5j-5l). In particular, when
𝑟 = |Γ | −1 = 5 in Figure 5k, the solution weights of Basic and Basic+
are twice that of ImprovAPP, which means that the solutions of
Basic and Basic+ are considerably worse than that of ImprovAPP.
The reason is as follows. Based on the enumerated 𝑇 (𝑣, Γ′), Basic
and Basic+ construct a feasible solution by directly merging lowest
weight paths between 𝑣 and every vertex group in Γ\Γ′ into𝑇 (𝑣, Γ′).
This direct merging process often induces larger solution weights
than a greedy merging process like that in ImprovAPP, i.e., greedily
and iteratively merging lowest weight paths between connected
vertices and unconnected vertex groups.

Moreover, Basic and Basic+ are often slower than ImprovAPP
when 𝑟 = |Γ | − 1 (e.g., Figures 4j-4k and 5j-5k). Particularly, when
𝑟 = |Γ | − 1 = 7 in Figure 4j, Basic and Basic+ are an order of magni-
tude slower than ImprovAPP. The reason is that Basic and Basic+
enumerate 𝑇 (𝑣, Γ′), and achieve a guarantee of 𝑟 if the weight of
the best found solution is not larger than 𝑟 times the weight of the
enumerated 𝑇 (𝑣, Γ′). Basic and Basic+ have an exponential time
complexity with respect to |Γ | even when 𝑟 = |Γ | − 1. In compar-
ison, ImprovAPP does not enumerate 𝑇 (𝑣, Γ′) for achieving the
guarantee of |Γ | − 1, and has a polynomial time complexity.

Note that, Basic or Basic+ cannot considerably outperform Im-
provAPP on either efficiency or practical solution quality, while
there are multiple scenarios where ImprovAPP considerably outper-
forms Basic and Basic+ on efficiency or practical solution quality (as
described above). Thus, Basic and Basic+ often do not have superior
efficiency or solution quality for finding sub-optimal solutions. As
a result, it may be preferable to use non-exact algorithms in many
cases. We evaluate non-exact algorithms as follows.
Evaluating non-exact algorithms. First, we observe that PartialOPT
is often slow (e.g., Figure 4b), since it employs DPBF |𝑔𝑚𝑖𝑛 | times
for connecting ℎ vertex groups optimally. Thus, we do not use
PartialOPT in the full DBLP and MovieLens graphs. Moreover, it is
too slow to use exIhlerA when |𝑔𝑚𝑖𝑛 | is large (e.g., Figure 5b), since
it employs Dijkstra’s algorithm |𝑔𝑚𝑖𝑛 | times. For this reason, 𝑡 of
exIhlerA decreases with |Γ | (e.g., Figure 4e), since |𝑔𝑚𝑖𝑛 | decreases
with |Γ | (see Figure 6). Hence, exIhlerA is only useful when |𝑔𝑚𝑖𝑛 | is
small. In comparison, exENSteiner, FastAPP and ImprovAPP can be
used when |𝑔𝑚𝑖𝑛 | is large, since these algorithms employ Dijkstra’s
algorithm |Γ | − 1 times.

1146

(a) Toronto (|Γ | = 8; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3) (b) DBLP (|Γ | = 6; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3) (c) MovieLens (|Γ | = 6; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3)

(d) Toronto (|𝑉 | = 46073; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3) (e) DBLP (|𝑉 | = 2497782; 𝜆 = 0.33; 𝑟 = 1) (f)MovieLens (|𝑉 | = 62423; 𝜆 = 0.33; 𝑟 = 1)

(g) Toronto (|𝑉 | = 46073; |Γ | = 8; 𝑟 = 1; ℎ = 3) (h) DBLP (|𝑉 | = 2497782; |Γ | = 6; 𝑟 = 1) (i)MovieLens (|𝑉 | = 62423; |Γ | = 6; 𝑟 = 1)

(j) Toronto (|𝑉 | = 46073; |Γ | = 8; 𝜆 = 0.33; ℎ = 3) (k) DBLP (|𝑉 | = 2497782; |Γ | = 6; 𝜆 = 0.33) (l) MovieLens (|𝑉 | = 62423; |Γ | = 6; 𝜆 = 0.33)
Figure 4: The main experiment results in which vertex groups are selected via the uniform approach.

(a) Toronto (|Γ | = 8; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3) (b) DBLP (|Γ | = 6; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3) (c) MovieLens (|Γ | = 6; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3)

(d) Toronto (|𝑉 | = 46073; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3) (e) DBLP (|𝑉 | = 2497782; 𝜆 = 0.33; 𝑟 = 1) (f)MovieLens (|𝑉 | = 62423; 𝜆 = 0.33; 𝑟 = 1)

(g) Toronto (|𝑉 | = 46073; |Γ | = 8; 𝑟 = 1; ℎ = 3) (h) DBLP (|𝑉 | = 2497782; |Γ | = 6; 𝑟 = 1) (i)MovieLens (|𝑉 | = 62423; |Γ | = 6; 𝑟 = 1)

(j) Toronto (|𝑉 | = 46073; |Γ | = 8; 𝜆 = 0.33; ℎ = 3) (k) DBLP (|𝑉 | = 2497782; |Γ | = 6; 𝜆 = 0.33) (l) MovieLens (|𝑉 | = 62423; |Γ | = 6; 𝜆 = 0.33)
Figure 5: The main experiment results in which vertex groups are selected via the non-uniform approach.

1147

Figure 6: The average |𝑔𝑚𝑖𝑛 | in the main experiment results.

Notably, exENSteiner can produce high-quality solutions similar
to those of ImprovAPP in some cases (e.g., Figure 4b). However,
exENSteiner has no approximation guarantee, and produces bad so-
lutions in some other cases (e.g., Figure 5b). In comparison, FastAPP
and ImprovAPP have the approximation guarantee of |Γ | − 1. Since
FastAPP and ImprovAPP can achieve the guarantee of |Γ | − 1 when
|𝑔𝑚𝑖𝑛 | is large (while exIhlerA and IhlerA cannot), FastAPP and
ImprovAPP advance the existing work on the efficiency of approxi-
mating group Steiner trees.

Furthermore, ImprovAPP dominates exENSteiner, exIhlerA and
FastAPP on solution qualities. A solution refinement process is used
in ImprovAPP, i.e., Lines 17-29 in ImprovAPP. In the supplement
[6], we show that the above dominance still holds after using this
process to refine the solutions of exENSteiner, exIhlerA and FastAPP.
Notably, ImprovAPP has a similar speed with FastAPP, although the
time complexity of ImprovAPP is𝑂 (|Γ | · (|𝐸 | + |𝑉 | log |𝑉 | + |𝑔𝑚𝑖𝑛 | ·
(|𝑉 | + log |Γ |))), while the time complexity of FastAPP is 𝑂 (|Γ | ·
(|𝐸 | + |𝑉 | log |𝑉 |)). The reason is as follows. When enumerating
vertex 𝑖 ∈ 𝑔𝑚𝑖𝑛 , ImprovAPP constructs a feasible solution tree Θ𝑖

by greedily concatenating lowest weight paths. Suppose that the
average number of vertices in Θ𝑖 is 𝑑 . Then, the time complexity of
ImprovAPP can be seen as 𝑂 (|Γ | · (|𝐸 | + |𝑉 | log |𝑉 | + |𝑔𝑚𝑖𝑛 | · (𝑑 +
log |Γ |))). In practice, 𝑑 is often small, i.e., the greedily constructed
solution tree is often small. As a result, the cost of ImprovAPP is
close to 𝑂 (|Γ | · (|𝐸 | + |𝑉 | log |𝑉 |)) in practice.

Unlike |𝑔𝑚𝑖𝑛 |, we generally have a limited |Γ | in practice. For
example, in team formation scenarios, |Γ | is the number of skills for
performing a task (e.g., [28, 33, 43]), and in region or keyword search
scenarios, |Γ | is the number of facility types or keywords that users
enter (e.g., [11, 14, 30, 31]). Therefore, it is reasonable to consider
that ImprovAPP has a high efficiency in practice. We summarize the
above experiment results and conclude that ImprovAPP combines
superior efficiency and solution quality when it is too slow to find
optimal solutions.
The trade-off in PartialOPT. PartialOPT can trade approximation
guarantees with time complexities by varying ℎ. We vary ℎ in
Figure 7, where the Toronto data is used, vertex groups are selected
uniformly, |𝑉 | = 46073, |Γ | = 6, 𝜆 = 0.33. We observe that 𝑐𝜆 (𝐺 ′)
of PartialOPT decreases with ℎ, since it connects ℎ vertex groups
optimally. Nevertheless, 𝑡 of PartialOPT increases exponentially
with ℎ, since its time complexity grows exponentially with ℎ. As
a result, PartialOPT is mainly of theoretical interest, since, to our
knowledge, it achieves the tightest polynomial-time approximation
guarantee to date for solving the group Steiner tree problem in
treewidth-unbounded graphs with both vertex and edge weights.

Figure 7: The experiment
results of varying ℎ.

Figure 8: Finding vertex- and
edge-weighted Steiner trees.

The efficiency of LANCET. GKA is a state-of-the-art algorithm
for solving the vertex- and edge-weighted Steiner tree problem.
We compare LANCET with GKA for solving this problem in the
transformed graph 𝐺𝑡 (see Theorem 1) in Figure 8, where the
Toronto data is used, vertex groups are selected uniformly, 𝜆 = 0.33,
|Γ | = |𝑇𝑡 | = 6, and 𝑐 (𝐺 ′

𝑡) −𝑀 · |𝑇𝑡 | is the non-dummy part of the
𝑐 (𝐺 ′

𝑡) value of LANCET or GKA (since each solution contains |𝑇𝑡 |
dummy edges, and the weight of each dummy edge is𝑀). We ob-
serve that GKA produces similar solutions with LANCET. However,
GKA does not scale well to large graphs, while LANCET scales well
to large graphs. The reason is that GKA requires finding the lowest
weight paths between every pair of vertices, which induces a time
complexity of 𝑂 (|𝑉𝑡 | · (|𝐸𝑡 | + |𝑉𝑡 | log |𝑉𝑡 |)), while LANCET has a
time complexity of𝑂 (|𝑇𝑡 | · (|𝐸𝑡 | + |𝑉𝑡 | log |𝑉𝑡 |)). Since the other ex-
isting algorithms have even weaker scalabilities than GKA (details
in Section 6), LANCET advances the existing work on the efficiency
of approximating vertex- and edge-weighted Steiner trees.

8 CONCLUSIONS AND FUTUREWORK
Few algorithms have been developed for finding vertex- and edge-
weighted group Steiner trees. Here, we develop several algorithms
to address this issue. First, we extend a heuristic algorithm and a
(|Γ | − 1)-approximation algorithm from vertex-unweighted graphs
to vertex- and edge-weighted graphs. Since the extended (|Γ | − 1)-
approximation algorithm does not scale well to |𝑔𝑚𝑖𝑛 |, we develop
two new (|Γ |−1)-approximation algorithms that scale well to |𝑔𝑚𝑖𝑛 |.
We also propose a (|Γ |−ℎ+1)-approximation algorithm. Experiments
show that, while no algorithm is the best in all cases, our algorithms
considerably outperform the state of the art in many scenarios.

Finding group Steiner trees helps retrieve information in rela-
tional databases (e.g., [7, 11, 14, 30, 31]). In such applications, the
databases may be modeled as directed graphs, and the task is to
find a group Steiner tree with a root vertex (i.e., there are directed
paths from the root vertex to the other vertices in this tree; e.g., [7]).
We can modify exIhlerA, FastAPP and ImprovAPP to obtain a guar-
antee of |Γ | − 1 for finding this tree, since the methods of merging
minimum-weight paths between vertices and vertex groups in these
algorithms suit directed graphs. We can also modify PartialOPT to
obtain a guarantee of |Γ | −ℎ + 1, since the incorporated DPBF suits
directed graphs. This flexibility shows that it may be possible to
use our methods to retrieve information from various graphs, such
as social networks [21, 22, 38] and knowledge graphs [26, 42].

ACKNOWLEDGMENTS
We sincerely thank Dr. Bolin Ding [14] and Dr. Ronghua Li [31] for
sharing codes of their algorithms. This work is sequentially funded
by MOE2016-T2-2-022 (2019-2020) from the Singapore Ministry
of Education, and a Start Up Grant (SUG) (2020-2021) from the
National University of Singapore.

1148

REFERENCES
[1] 2021. AMiner. https://www.aminer.org/.
[2] 2021. DBLP: computer science bibliography. https://dblp.uni-trier.de/.
[3] 2021. GroupLens. https://grouplens.org/.
[4] 2021. MovieLens. https://movielens.org/.
[5] 2021. The City of Toronto’s Open Data Portal. https://open.toronto.ca/.
[6] 2021. The supplement. https://github.com/YahuiSun/GroupSteinerTree/blob/

main/Supplement.pdf.
[7] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and

Shashank Sudarshan. 2002. Keyword searching and browsing in databases using
BANKS. In IEEE International Conference on Data Engineering. IEEE, 431–440.

[8] Parinya Chalermsook, Syamantak Das, Bundit Laekhanukit, and Daniel Vaz.
2017. Beyond metric embedding: Approximating group steiner trees on bounded
treewidth graphs. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms. Society for Industrial and Applied Mathematics,
737–751.

[9] Moses Charikar, Chandra Chekuri, To-yat Cheung, Zuo Dai, Ashish Goel, Sudipto
Guha, andMing Li. 1999. Approximation algorithms for directed Steiner problems.
Journal of Algorithms 33, 1 (1999), 73–91.

[10] Chandra Chekuri and Martin Pal. 2005. A recursive greedy algorithm for walks
in directed graphs. In 46th Annual IEEE Symposium on Foundations of Computer
Science. IEEE, 245–253.

[11] Joel Coffman and Alfred C Weaver. 2014. An empirical performance evaluation
of relational keyword search techniques. IEEE Transactions on Knowledge and
Data Engineering 26, 1 (2014), 30–42.

[12] Erik D Demaine, Mohammad Taghi Hajiaghayi, and Philip N Klein. 2014. Node-
weighted Steiner tree and group Steiner tree in planar graphs. ACM Transactions
on Algorithms 10, 3 (2014), 13.

[13] Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs.
Numerische mathematik 1, 1 (1959), 269–271.

[14] Bolin Ding, Jeffrey Xu Yu, Shan Wang, Lu Qin, Xiao Zhang, and Xuemin Lin.
2007. Finding top-k min-cost connected trees in databases. In IEEE International
Conference on Data Engineering. IEEE, 836–845.

[15] Stuart E Dreyfus and Robert A Wagner. 1971. The Steiner problem in graphs.
Networks 1, 3 (1971), 195–207.

[16] CW Duin, A Volgenant, and Stefan Voß. 2004. Solving group Steiner problems
as Steiner problems. European Journal of Operational Research 154, 1 (2004),
323–329.

[17] Karoline Faust, Pierre Dupont, Jérôme Callut, and Jacques Van Helden. 2010.
Pathway discovery in metabolic networks by subgraph extraction. Bioinformatics
26, 9 (2010), 1211–1218.

[18] Michael L Fredman and Robert Endre Tarjan. 1987. Fibonacci heaps and their
uses in improved network optimization algorithms. Journal of the ACM 34, 3
(1987), 596–615.

[19] Naveen Garg, Goran Konjevod, and R Ravi. 2000. A polylogarithmic approxima-
tion algorithm for the group Steiner tree problem. Journal of Algorithms 37, 1
(2000), 66–84.

[20] Sudipto Guha and Samir Khuller. 1999. Improved methods for approximating
node weighted Steiner trees and connected dominating sets. Information and
computation 150, 1 (1999), 57–74.

[21] Kai Han, Yuntian He, Xiaokui Xiao, Shaojie Tang, Fei Gui, Chaoting Xu, and Jun
Luo. 2018. Budget-constrained organization of influential social events. In 2018
IEEE 34th International Conference on Data Engineering. IEEE, 917–928.

[22] Kai Han, Yuntian He, Xiaokui Xiao, Shaojie Tang, Fei Gui, Chaoting Xu, and Jun
Luo. 2018. Organizing an Influential Social Event under a Budget Constraint.
IEEE Transactions on Knowledge and Data Engineering (2018).

[23] Shuo Han, Lei Zou, Jeffery Xu Yu, and Dongyan Zhao. 2017. Keyword search
on RDF graphs-a query graph assembly approach. In Proceedings of the ACM
Conference on Information and Knowledge Management. ACM, 227–236.

[24] Christopher S Helvig, Gabriel Robins, and Alexander Zelikovsky. 2001. An
improved approximation scheme for the group Steiner problem. Networks 37, 1

(2001), 8–20.
[25] Edmund Ihler. 1990. Bounds on the quality of approximate solutions to the

group Steiner problem. In International Workshop on Graph-Theoretic Concepts in
Computer Science. Springer, 109–118.

[26] Nandish Jayaram, Arijit Khan, Chengkai Li, Xifeng Yan, and Ramez Elmasri. 2015.
Querying knowledge graphs by example entity tuples. IEEE Transactions on
Knowledge and Data Engineering 27, 10 (2015), 2797–2811.

[27] Philip Klein and R Ravi. 1995. A nearly best-possible approximation algorithm
for node-weighted Steiner trees. Journal of Algorithms 19, 1 (1995), 104–115.

[28] Theodoros Lappas, Kun Liu, and Evimaria Terzi. 2009. Finding a team of experts in
social networks. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 467–476.

[29] Guoliang Li, Beng Chin Ooi, Jianhua Feng, Jianyong Wang, and Lizhu Zhou.
2008. EASE: an effective 3-in-1 keyword search method for unstructured, semi-
structured and structured data. In Proceedings of the 2008 ACM SIGMOD interna-
tional conference on Management of data. ACM, 903–914.

[30] Guoliang Li, Xiaofang Zhou, Jianhua Feng, and JianyongWang. 2009. Progressive
keyword search in relational databases. In IEEE International Conference on Data
Engineering. IEEE, 1183–1186.

[31] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. 2016. Efficient and progressive
group Steiner tree search. In Proceedings of the 2016 International Conference on
Management of Data. ACM, 91–106.

[32] Xiang Li, Yan Zhao, Xiaofang Zhou, and Kai Zheng. 2020. Consensus-Based
Group Task Assignment with Social Impact in Spatial Crowdsourcing. Data
Science and Engineering 5, 4 (2020), 375–390.

[33] Anirban Majumder, Samik Datta, and KVM Naidu. 2012. Capacitated team
formation problem on social networks. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 1005–
1013.

[34] Silviu Maniu, Pierre Senellart, and Suraj Jog. 2019. An experimental study of the
treewidth of real-world graph data. In 22nd International Conference on Database
Theory. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[35] Robert Clay Prim. 1957. Shortest connection networks and some generalizations.
Bell system technical journal 36, 6 (1957), 1389–1401.

[36] Gabriele Reich and Peter Widmayer. 1989. Beyond Steiner’s problem: A VLSI
oriented generalization. In International Workshop on Graph-theoretic Concepts in
Computer Science. Springer, 196–210.

[37] G Reich and P Widmayer. 1991. Approximate minimum spanning trees for vertex
classes. Technical Report. Technical Report, Inst. fur Informatik, Freiburg Univ.

[38] Xiaohan Shan, Wei Chen, Qiang Li, Xiaoming Sun, and Jialin Zhang. 2019. Cu-
mulative activation in social networks. Science China Information Sciences 62, 5
(2019), 1–21.

[39] Yahui Sun, Jun Luo, Theodoros Lappas, Xiaokui Xiao, and Bin Cui. 2020. Hunting
multiple bumps in graphs. Proceedings of the VLDB Endowment 13, 5 (2020),
656–669.

[40] Yahui Sun, Daniel Rehfeldt, Marcus Brazil, Doreen Thomas, and Saman Hal-
gamuge. 2020. A Physarum-inspired algorithm for minimum-cost relay node
placement in wireless sensor networks. IEEE/ACM Transactions on Networking
28, 2 (2020), 681–694.

[41] Hiromitsu Takahashi and Akira Matsuyama. 1980. An approximate solution for
the Steiner problem in graphs. Math. Japonica 24, 6 (1980), 573–577.

[42] Peihao Tong, Qifan Zhang, and Junjie Yao. 2019. Leveraging domain context for
question answering over knowledge graph. Data Science and Engineering 4, 4
(2019), 323–335.

[43] Xinyu Wang, Zhou Zhao, and Wilfred Ng. 2016. Ustf: A unified system of team
formation. IEEE Transactions on Big Data 2, 1 (2016), 70–84.

[44] Jing Zhang and Jie Tang. 2020. Name disambiguation in AMiner. Science China
Information Sciences 64, 4 (2020), 144101.

[45] Feng Zou, Xianyue Li, Suogang Gao, and Weili Wu. 2009. Node-weighted Steiner
tree approximation in unit disk graphs. Journal of Combinatorial Optimization
18, 4 (2009), 342.

1149

Finding Group Steiner Trees in Graphs with both Vertex
and Edge Weights: Some Supplemental Materials

Road map. In Section 1, we prove the transformation from group Steiner trees to Steiner trees. In Section 2, we prove the approximation
guarantee of LANCET. In Section 3, we explain the time complexity of LANCET. In Section 4, we explain the time complexity of exENSteiner.
In Section 5, we prove the approximation guarantee of exIhlerA. In Section 6, we prove the approximation guarantee of FastAPP. In Section
7, we prove the approximation guarantee of ImprovAPP. In Section 8, we prove the approximation guarantee of PartialOPT. In Section 9, we
explain the time complexity of PartialOPT. In Section 10, we show the usefulness of the refinement process (i.e., Lines 16-29) in ImprovAPP.
In Section 11, we show that PrunedDP and PrunedDP++ in [2] rely on techniques that do not hold in graphs with vertex weights. In Section
12, we show the memory consumption results. In Section 13, we refine the solutions of exENSteiner, exIhlerA and FastAPP.

1 THE TRANSFORMATION
Theorem 1. Let𝐺 (𝑉 , 𝐸,𝑤, 𝑐) be a connected undirected graph, and Γ be a set of vertex groups. Let𝐺𝑡 (𝑉𝑡 , 𝐸𝑡 ,𝑤𝑡 , 𝑐𝑡) be a connected undirected

graph, and 𝑇𝑡 ⊆ 𝑉𝑡 be a set of compulsory vertices. Based on 𝐺 and Γ, we construct 𝐺𝑡 and 𝑇𝑡 in the following way:

(1) Initialize 𝑉𝑡 = 𝑉 , 𝐸𝑡 = 𝐸, 𝑇𝑡 = ∅,𝑤𝑡 = (1 − 𝜆)𝑤 , and 𝑐𝑡 = 𝜆𝑐 .

(2) For each vertex group 𝑔 ∈ Γ, (i) add a dummy vertex 𝑣𝑔 into 𝑇𝑡 and 𝑉𝑡 , such that𝑤𝑡 (𝑣𝑔) = 0, and (ii) add dummy edges (𝑣𝑔, 𝑗) for all 𝑗 ∈ 𝑔
into 𝐸𝑡 , such that 𝑐𝑡 (𝑣𝑔, 𝑗) = 𝑀 , and𝑀 is a constant satisfying

𝑀 > (1 − 𝜆)
∑
𝑣∈𝑉

𝑤 (𝑣) + 𝜆
∑

𝑒∈𝐸𝑀𝑆𝑇

𝑐 (𝑒), (1)

and 𝐸𝑀𝑆𝑇 is the set of edges in a Minimum Spanning Tree of 𝐺 .

Let Θ𝐺𝑡 be an optimal solution to the vertex- and edge-weighted Steiner tree problem in 𝐺𝑡 , and Θ𝑛𝑜𝑛
𝐺𝑡

be the non-dummy part of Θ𝐺𝑡 . Then,
there is an optimal solution to the vertex- and edge-weighted group Steiner tree problem in 𝐺 , namely, Θ𝐺 , that has the same sets of vertices and
edges with Θ𝑛𝑜𝑛

𝐺𝑡
.

Proof. Since dummy vertices only connect non-dummy vertices, there are at least |Γ | dummy edges in Θ𝐺𝑡 . If 𝑐𝜆 (Θ𝐺) < 𝑐 (Θ𝑛𝑜𝑛
𝐺𝑡

), then
there is a feasible solution to the vertex- and edge-weighted Steiner tree problem in 𝐺𝑡 : Θ′

𝐺𝑡
such that

𝑐 (Θ′
𝐺𝑡

) = 𝑐𝜆 (Θ𝐺) +𝑀 |Γ | < 𝑐 (Θ𝐺𝑡), (2)

which is not possible. Thus, we have 𝑐𝜆 (Θ𝐺) ≥ 𝑐 (Θ𝑛𝑜𝑛
𝐺𝑡

). Let Θ′′
𝐺𝑡

be a tree in𝐺𝑡 such that (i) every dummy vertex 𝑣𝑔 is a leaf of Θ′′
𝐺𝑡

; and (ii)
the non-dummy part of Θ′′

𝐺𝑡
, namely, Θ𝑛𝑜𝑛′′

𝐺𝑡
, is in a Minimum Spanning Tree of 𝐺 . Suppose that there is a dummy vertex 𝑣𝑔 in Θ𝐺𝑡 that is

not a leaf. Since 𝑐 (Θ𝑛𝑜𝑛′′
𝐺𝑡

) < 𝑀 , we have

𝑐 (Θ𝐺𝑡) ≥ 𝑐 (Θ𝑛𝑜𝑛
𝐺𝑡

) +𝑀 (|Γ | + 1) > 𝑐 (Θ′′
𝐺𝑡

) = 𝑐 (Θ𝑛𝑜𝑛′′
𝐺𝑡

) +𝑀 |Γ |, (3)

which is not possible. Thus, every dummy compulsory vertex 𝑣𝑔 is a leaf of Θ𝐺𝑡 . As a result, Θ𝑛𝑜𝑛
𝐺𝑡

is connected and shares the same
sets of vertices and edges with a feasible solution to the vertex- and edge-weighted group Steiner tree problem in 𝐺 , which means that
𝑐𝜆 (Θ𝐺) ≤ 𝑐 (Θ𝑛𝑜𝑛

𝐺𝑡
). Therefore, 𝑐𝜆 (Θ𝐺) = 𝑐 (Θ𝑛𝑜𝑛

𝐺𝑡
). Hence, this theorem holds. □

2 THE APPROXIMATION GUARANTEE OF LANCET
LANCET can be regarded as the vertex- and edge-weighted version of the algorithm in [3], which achieves an approximation guarantee of
2(1 − 1/|𝑇𝑡 |) for solving the vertex-unweighted Steiner tree problem. This approximation guarantee relies on the following deduction (i.e.,
Lemma 1 in [3]): since a pre-order traversal of a tree traverses every edge in this tree exactly twice (see Figure 1 in [3]), in a graph with
only edge weights, if we perform a pre-order traversal of an optimal solution tree and sum up every weight that we encounter (including
duplicates), then the result is exactly twice the weight of an optimal solution tree. However, in a graph with both vertex and edge weights,
summing up the weights that we encounter during this traversal does not always result in twice the weight of an optimal solution tree, since
(i) an optimal solution tree may contain non-compulsory vertices with positive weights; and (ii) a pre-order traversal of an optimal solution
tree may visit such a vertex more than twice (specifically, the number of times that a pre-order traversal of an optimal solution tree visits
such a vertex equals the degree of this vertex in this optimal solution tree). Thus, the above approximation guarantee of 2(1 − 1/|𝑇𝑡 |) does
not hold for LANCET. In what follows, we establish the approximation guarantee of LANCET.

Theorem 2. LANCET has a sharp approximation guarantee of |𝑇𝑡 | − 1 for solving the vertex- and edge-weighted Steiner tree problem.

Proof. LANCET merges |𝑇𝑡 | − 1 LWPs to connect all compulsory vertices together. Suppose that the highest-weight one of these LWPs is
𝐿𝑊𝑃 ′, and Θ𝑜𝑝𝑡 is an optimal solution. Since 𝑐 (𝐿𝑊𝑃 ′) is smaller than or equal to the weight of the LWP between a pair of compulsory

Figure 1: Touching the approximation guarantee of |𝑇𝑡 | − 1.

vertices, we have
𝑐 (Θ𝑜𝑝𝑡) ≥ 𝑐 (𝐿𝑊𝑃 ′). (4)

Since there are |𝑇𝑡 | − 1 LWPs that have been merged, we have
(|𝑇𝑡 | − 1)𝑐 (Θ𝑜𝑝𝑡) ≥ (|𝑇𝑡 | − 1)𝑐 (𝐿𝑊𝑃 ′) ≥ 𝑐 (Θ) . (5)

Therefore, LANCET has an approximation guarantee of |𝑇𝑡 | − 1. We further show that |𝑇𝑡 | − 1 is the sharp approximation guarantee of
LANCET. Consider a regular polygon composed of |𝑇𝑡 | compulsory vertices, and a non-compulsory vertex that is in the middle of this
polygon and connects |𝑇𝑡 | compulsory vertices (see Figure 1). The weight of each edge between compulsory vertices is 𝑥 , the weight of each
edge between a compulsory vertex and the middle non-compulsory vertex is 0, the weight of each compulsory vertex is 0, and the weight of
the middle non-compulsory vertex is 𝑧. Suppose that 𝑥 = 𝑧 − 𝛿 , where 𝛿 is a tiny positive value; and 𝑧 < (|𝑇𝑡 | − 1)𝑥 . Since 𝑥 < 𝑧, Θ contains
|𝑇𝑡 | − 1 edges between compulsory vertices, and 𝑐 (Θ) = (|𝑇𝑡 | − 1)𝑥 . Since 𝑧 < (|𝑇𝑡 | − 1)𝑥 , Θ𝑜𝑝𝑡 contains all the edges between compulsory
vertices and the middle non-compulsory vertex, and 𝑐 (Θ𝑜𝑝𝑡) = 𝑧. We have

lim
𝛿→0

𝑐 (Θ)
𝑐 (Θ𝑜𝑝𝑡) =

(|𝑇𝑡 | − 1) (𝑧 − 𝛿)
𝑧

= |𝑇𝑡 | − 1. (6)

Hence, |𝑇𝑡 | − 1 is the sharp approximation guarantee of LANCET. □

3 THE TIME COMPLEXITY OF LANCET
Time complexity of LANCET:

𝑂
(
|𝑇𝑡 | · (|𝐸𝑡 | + |𝑉𝑡 | log |𝑉𝑡 |)

)
.

The details are as follows. The overhead of the initialization (Lines 1-2) is𝑂 (|𝑇𝑡 |). The LWPs from a vertex to the other vertices can be found
using Dijkstra’s algorithm in𝑂 (|𝐸𝑡 | + |𝑉𝑡 | log |𝑉𝑡 |) time. Thus, the cost of finding the LWPs from every vertex in𝑉2 to the other vertices (Line
3) is 𝑂 (|𝑇𝑡 | (|𝐸𝑡 | + |𝑉𝑡 | log |𝑉𝑡 |)). It takes 𝑂 (|𝑇𝑡 |) time to push the LWPs from every vertex in 𝑉2 to 𝑖𝑟𝑎𝑛𝑑 into 𝑄 (Line 4). It concatenates the
LWPs between unconnected compulsory vertices and connected vertices using a while loop with𝑂 (|𝑇𝑡 |) iterations as follows. Since popping
out the top element in the Fibonacci heap takes 𝑂 (log |𝑇𝑡 |) time, it pops out 𝐿𝑊𝑃𝑚𝑖𝑛 (𝑉𝑚𝑖𝑛, 𝐸𝑚𝑖𝑛) in 𝑂 (|𝑇𝑡 | log |𝑇𝑡 |) time throughout the
loop (Line 6). We use adjacency lists based on hashes to store graphs. Since adding a vertex or an edge into such an adjacency list takes 𝑂 (1)
time, LANCET merges 𝐿𝑊𝑃𝑚𝑖𝑛 (𝑉𝑚𝑖𝑛, 𝐸𝑚𝑖𝑛) into Θ (Line 7) in𝑂 (|𝑉𝑡 |) time in all iterations combined. We use hashes to store𝑉1 and𝑉2. As a
result, updating 𝑉1 and 𝑉2 (Lines 8-9) takes 𝑂 (|𝑉𝑡 |) time throughout the loop. Since the time complexity of decreasing the key of an element
in a min Fibonacci heap is 𝑂 (1); and LANCET checks and updates the minimum-weight LWPs from every vertex in 𝑉2 to 𝑉1 only when a
new vertex is added into 𝑉1, updating the LWPs (Line 10) takes 𝑂 (|𝑇𝑡 | |𝑉𝑡 |) time throughout the loop.

4 THE TIME COMPLEXITY OF exENSteiner
Time complexity of exENSteiner:

𝑂
(
|Γ | · (|𝐸 | + |𝑉 | log |𝑉 | + |Γ | log |Γ | + |Γ | |𝑉 |)

)
.

The details are as follows. exENSteiner first transforms the input graph in𝑂 (|𝐸 | + |Γ | |𝑉 |) time (Line 1). This is because (i) this transformation
requires examining all vertices and edges to decide the value of𝑀 , which takes𝑂 (|𝑉 |+|𝐸 |) time, and (ii) it adds |Γ | dummy vertices and

∑
𝑔∈Γ |𝑔|

dummy edges, which incurs𝑂 (|Γ | |𝑉 |) overhead. Then, it employs LANCET to find a Steiner tree in𝑂 (|Γ | (|𝐸 | + |𝑉 | log |𝑉 | + |Γ | log |Γ | + |Γ | |𝑉 |))
time (Line 2), since LANCET takes 𝑂 (|𝑇𝑡 | (|𝐸𝑡 | + |𝑉𝑡 | log |𝑉𝑡 |)) time; and |𝑇𝑡 | = |Γ |, |𝑉𝑡 | = |𝑉 | + |Γ | and |𝐸𝑡 | = |𝐸 | +∑

𝑔∈Γ |𝑔|. After that, it
removes |Γ | dummy vertices and |Γ | dummy edges (Line 3), which takes 𝑂 (|Γ |) time. It identifies the MST (Line 4) in 𝑂 (|𝐸 | + |𝑉 | log |𝑉 |)
time. Notably, since |Γ | is often limited in practice, the cost of exENSteiner is close to 𝑂 (|Γ | · (|𝐸 | + |𝑉 | log |𝑉 |)) in practice.

5 THE APPROXIMATION GUARANTEE OF exIhlerA
Theorem 3. exIhlerA has a sharp approximation guarantee of |Γ | − 1 for solving the vertex- and edge-weighted group Steiner tree problem.

Proof. Suppose that Θ𝑂𝑃𝑇 (𝑉𝑂𝑃𝑇 , 𝐸𝑂𝑃𝑇) is an optimal solution. Let Γ = {𝑔1, . . . , 𝑔 |Γ |}. There is a tuple (𝑣1, . . . , 𝑣 |Γ |) such that 𝑣𝑖 ∈
𝑉𝑂𝑃𝑇 ∩ 𝑔𝑖 for all 𝑖 ∈ {1, . . . , |Γ |}. Without loss of generality, assume that 𝑔𝑚𝑖𝑛 = 𝑔1. For every 𝑖 ∈ {2, . . . , |Γ |}, there is exactly one simple
path between 𝑣1 and 𝑣𝑖 in Θ𝑂𝑃𝑇 , which we refer to as 𝑃𝑣1𝑣𝑖 . We have

𝑐𝜆 (𝑃𝑣1𝑣𝑖) ≤ 𝑐𝜆 (Θ𝑂𝑃𝑇), (7)

Figure 2: Touching the approximation guarantee of |Γ | − 1.∑
𝑔∈Γ\𝑔1

𝑐𝜆 (𝐿𝑊𝑃𝜆𝑣1𝑔) ≤
∑

𝑖∈{2,..., |Γ | }
𝑐𝜆 (𝑃𝑣1𝑣𝑖) . (8)

Thus,

𝑐𝜆 (Θ) ≤ 𝑐𝜆 (𝐺𝑣1) ≤
∑

𝑔∈Γ\𝑔1
𝑐𝜆 (𝐿𝑊𝑃𝜆𝑣1𝑔) ≤

∑
𝑖∈{2,..., |Γ | }

𝑐𝜆 (𝑃𝑣1𝑣𝑖) ≤ (|Γ | − 1)𝑐𝜆 (Θ𝑂𝑃𝑇) . (9)

Hence, exIhlerA has an approximation guarantee of |Γ | −1. We note that this guarantee is sharp. To explain, consider the graph𝐺 (𝑉 , 𝐸,𝑤, 𝑐) in
Figure 2, where 𝑉 = {𝑣0, 𝑣1, . . . , 𝑣 |Γ |}, 𝐸 = {(𝑣 |Γ |, 𝑣0), (𝑣 |Γ |, 𝑣1), . . . , (𝑣 |Γ |, 𝑣 |Γ |−1)},𝑤 (𝑖) = 0 for all 𝑖 ∈ 𝑉 , 𝑐 (𝑣 |Γ |, 𝑣1) = . . . = 𝑐 (𝑣 |Γ |, 𝑣 |Γ |−1) = 1,
and 𝑐 (𝑣 |Γ |, 𝑣0) = 1 + 𝛿 , where 𝛿 is a tiny positive value. In addition, Γ = {𝑣0, 𝑣1} ∪ . . . ∪ {𝑣0, 𝑣 |Γ |−1} ∪ {𝑣 |Γ |}. Let 𝜆 = 1. Since 𝑔𝑚𝑖𝑛 = {𝑣 |Γ |},
exIhlerA produces the solution Θ = {(𝑣 |Γ |, 𝑣1), . . . , (𝑣 |Γ |, 𝑣 |Γ |−1)}, and 𝑐𝜆 (Θ) = |Γ | − 1. When |Γ | = 2, Θ is the optimal solution, i.e., the
approximation ratio is |Γ | − 1 = 1. When |Γ | > 2, we have Θ𝑂𝑃𝑇 = {(𝑣 |Γ |, 𝑣0)}, and

lim
𝛿→0

𝑐𝜆 (Θ)
𝑐𝜆 (Θ𝑂𝑃𝑇)

=
|Γ | − 1
1 + 𝛿

= |Γ | − 1. (10)

Hence, the best possible approximation guarantee of exIhlerA is |Γ | − 1. □

6 THE APPROXIMATION GUARANTEE OF FastAPP
Theorem 4. FastAPP has a sharp approximation guarantee of |Γ | − 1 for solving the vertex- and edge-weighted group Steiner tree problem.

Proof. Let Θ𝑂𝑃𝑇 (𝑉𝑂𝑃𝑇 , 𝐸𝑂𝑃𝑇) be an optimal solution, and Γ = {𝑔1, . . . , 𝑔 |Γ |}. There is a tuple (𝑣1, . . . , 𝑣 |Γ |) such that 𝑣𝑖 ∈ 𝑉𝑂𝑃𝑇 ∩ 𝑔𝑖 for
all 𝑖 ∈ {1, . . . , |Γ |}. Without loss of generality, suppose that 𝑔𝑚𝑖𝑛 = 𝑔1. Let 𝑔𝑥 ∈ Γ \ 𝑔1 be such a vertex group that

𝑐𝜆 (𝐿𝑊𝑃𝜆𝑣1𝑔𝑥) = max{𝑐𝜆 (𝐿𝑊𝑃𝜆𝑣1𝑔) | ∀𝑔 ∈ Γ \ 𝑔1}. (11)
Since 𝐿𝑊𝑃𝜆𝑣1𝑔𝑥 links fewer groups to 𝑣1 than Θ𝑂𝑃𝑇 , we have

𝑐𝜆 (𝐿𝑊𝑃𝜆𝑣1𝑔𝑥) ≤ 𝑐𝜆 (Θ𝑂𝑃𝑇). (12)
Lines 5-8 in FastAPP guarantee that

max{𝑐𝜆 (𝐿𝑊𝑃𝜆𝑖𝑚𝑖𝑛𝑔) | ∀𝑔 ∈ Γ \ 𝑔1} ≤ 𝑐𝜆 (𝐿𝑊𝑃𝜆𝑣1𝑔𝑥) . (13)
By Lines 10-11 in FastAPP, we have

𝑐𝜆 (Θ) ≤ (|Γ | − 1) ·max{𝑐𝜆 (𝐿𝑊𝑃𝜆𝑖𝑚𝑖𝑛𝑔) | ∀𝑔 ∈ Γ \ 𝑔1}. (14)
Thus,

𝑐𝜆 (Θ) ≤ (|Γ | − 1)𝑐𝜆 (𝐿𝑊𝑃𝜆𝑣1𝑔𝑥) ≤ (|Γ | − 1)𝑐𝜆 (Θ𝑂𝑃𝑇). (15)
Hence, FastAPP has an approximation guarantee of |Γ | − 1. The sharpness of this guarantee can be seen from the example in Section 5, i.e.,
Figure 2. Hence, this theorem holds. □

7 THE APPROXIMATION GUARANTEE OF ImprovAPP
Theorem 5. ImprovAPP has a sharp approximation guarantee of |Γ | − 1 for solving the vertex- and edge-weighted group Steiner tree problem.

Proof. Let Θ𝑂𝑃𝑇 (𝑉𝑂𝑃𝑇 , 𝐸𝑂𝑃𝑇) be an optimal solution. Let Γ = {𝑔1, . . . , 𝑔 |Γ |}. There is a tuple (𝑣1, . . . , 𝑣 |Γ |) such that 𝑣𝑖 ∈ 𝑉𝑂𝑃𝑇 ∩ 𝑔𝑖
for all 𝑖 ∈ {1, . . . , |Γ |}. Without loss of generality, suppose that 𝑔𝑚𝑖𝑛 = 𝑔1. When ImprovAPP processes 𝑣1 in the for loop (Lines 5-14), it
concatenates |Γ | − 1 lowest weight paths that link {𝑔2, . . . , 𝑔 |Γ |}, respectively, to build Θ𝑣1 . Let 𝐿𝑊𝑃𝜆𝑣𝑥𝑔𝑦 be one of these paths that has the
largest regulated weight, and links 𝑔𝑦 ∈ {𝑔2, . . . , 𝑔 |Γ |}. Then,

𝑐𝜆 (Θ𝑣1) ≤ (|Γ | − 1)𝑐𝜆 (𝐿𝑊𝑃𝜆𝑣𝑥𝑔𝑦). (16)
Let 𝐿𝑊𝑃𝜆𝑣1𝑔𝑦 be the lowest weight path between 𝑣1 and 𝑔𝑦 . Since 𝐿𝑊𝑃𝜆𝑣1𝑔𝑦 has been pushed into 𝑄 initially (Line 6) and has (possibly)
been updated to 𝐿𝑊𝑃𝜆𝑣𝑥𝑔𝑦 (Line 12), we have

𝑐𝜆 (𝐿𝑊𝑃𝜆𝑣𝑥𝑔𝑦) ≤ 𝑐𝜆 (𝐿𝑊𝑃𝜆𝑣1𝑔𝑦) . (17)

Figure 3: Touching the approximation guarantee of |Γ | − ℎ + 1.

Since 𝐿𝑊𝑃𝜆𝑣1𝑔𝑦 links fewer groups to 𝑣1 than Θ𝑂𝑃𝑇 , we have

𝑐𝜆 (𝐿𝑊𝑃𝜆𝑣1𝑔𝑦) ≤ 𝑐𝜆 (Θ𝑂𝑃𝑇) . (18)
Thus,

𝑐𝜆 (Θ) ≤ 𝑐𝜆 (Θ𝑣1) ≤ (|Γ | − 1)𝑐𝜆 (𝐿𝑊𝑃𝜆𝑣𝑥𝑔𝑦) ≤ (|Γ | − 1)𝑐𝜆 (𝐿𝑊𝑃𝜆𝑣1𝑔𝑦) ≤ (|Γ | − 1)𝑐𝜆 (Θ𝑂𝑃𝑇) . (19)

Therefore, ImprovAPP has an approximation guarantee of |Γ | − 1. The sharpness of this guarantee can be seen from the example in Section 5,
i.e., Figure 2. Thus, this theorem holds. □

8 THE APPROXIMATION GUARANTEE OF PartialOPT
Theorem 6. PartialOPT has a sharp approximation guarantee of |Γ | − ℎ + 1 for solving the vertex- and edge-weighted group Steiner tree

problem.

Proof. Suppose that Θ𝑂𝑃𝑇 (𝑉𝑂𝑃𝑇 , 𝐸𝑂𝑃𝑇) is an optimal solution, and Γ = {𝑔1, . . . , 𝑔 |Γ |}. There is a tuple (𝑣1, . . . , 𝑣 |Γ |) such that 𝑣𝑖 ∈
𝑉𝑂𝑃𝑇 ∩𝑔𝑖 for all 𝑖 ∈ {1, . . . , |Γ |}. Without loss of generality, let 𝑔𝑚𝑖𝑛 = 𝑔1. For 𝑣1 ∈ 𝑔𝑚𝑖𝑛 , Θℎ

𝑣1 is optimal for Γ1 = {{𝑣1}, 𝑔2, . . . , 𝑔ℎ}. Since Θℎ
𝑣1

connects fewer vertex groups to 𝑣1 than Θ𝑂𝑃𝑇 , we have

𝑐𝜆 (Θℎ
𝑣1) ≤ 𝑐𝜆 (Θ𝑂𝑃𝑇). (20)

If Γ2 = {{𝑣1}} (i.e., ℎ = |Γ |), then Θ
|Γ |
𝑣1 = {𝑣1}, and 𝑐𝜆 (Θ) = 𝑐𝜆 (Θ𝑂𝑃𝑇). Otherwise (i.e., ℎ < |Γ |), we implement exIhlerA to produce Θ |Γ |

𝑣1 for
Γ2 = {{𝑣1}, 𝑔ℎ+1, . . . , 𝑔 |Γ |}. Suppose that Θ |Γ |

𝑂𝑃𝑇 is an optimal solution for Γ2. The proof of Theorem 3 shows that

𝑐𝜆 (Θ |Γ |
𝑣1) ≤ (|Γ | − ℎ)𝑐𝜆 (Θ |Γ |

𝑂𝑃𝑇) . (21)

Since Θ |Γ |
𝑂𝑃𝑇 connects fewer vertex groups to 𝑣1 than Θ𝑂𝑃𝑇 , we have

𝑐𝜆 (Θ |Γ |
𝑂𝑃𝑇) ≤ 𝑐𝜆 (Θ𝑂𝑃𝑇). (22)

Thus,

𝑐𝜆 (Θ) ≤ 𝑐𝜆 (𝐺𝑣1) = 𝑐𝜆 (Θℎ
𝑣1 ∪ Θ

|Γ |
𝑣1) ≤ 𝑐𝜆 (Θℎ

𝑣1) + 𝑐𝜆 (Θ
|Γ |
𝑣1) ≤ (|Γ | − ℎ + 1)𝑐𝜆 (Θ𝑂𝑃𝑇). (23)

Therefore, PartialOPT has an approximation guarantee of |Γ | − ℎ + 1. We show that this guarantee is sharp. Consider the graph𝐺 (𝑉 , 𝐸,𝑤, 𝑐)
in Figure 3, where 𝑉 = {𝑣0, 𝑣1, . . . , 𝑣 |Γ |+1}, 𝐸 = {(𝑣0, 𝑣1), (𝑣0, 𝑣2), . . . , (𝑣0, 𝑣 |Γ |), (𝑣1, 𝑣 |Γ |+1)}, 𝑤 (𝑖) = 0 for every 𝑖 ∈ {𝑣0, . . . , 𝑣ℎ−1}, 𝑤 (𝑖) = 1
for every 𝑖 ∈ {𝑣ℎ, . . . , 𝑣 |Γ |+1}, 𝑐 (𝑣0, 𝑣1) = 𝛿1, 𝑐 (𝑣1, 𝑣 |Γ |+1) = 𝛿2, where 𝛿1 and 𝛿2 are two tiny positive values, and 𝛿1 < 𝛿2, and all the other
edge weights are zero. In addition, Γ = {𝑔1, . . . , 𝑔 |Γ |} = {𝑣0, 𝑣1} ∪ {𝑣2, 𝑣 |Γ |+1} ∪ . . . ∪ {𝑣 |Γ |, 𝑣 |Γ |+1}. Let 𝜆 = 0.5, i.e., vertex and edge weights
are regulated equally. PartialOPT enumerates two vertices in 𝑔𝑚𝑖𝑛 : 𝑣0 and 𝑣1. For 𝑣0, PartialOPT produces Θℎ

𝑣0 = {(𝑣0, 𝑣2), . . . , (𝑣0, 𝑣ℎ)},
and Θ

|Γ |
𝑣0 = {(𝑣0, 𝑣ℎ+1), . . . , (𝑣0, 𝑣 |Γ |)}. Thus, Θ𝑣0 = {(𝑣0, 𝑣2), . . . , (𝑣0, 𝑣 |Γ |)}. Similarly, for 𝑣1, since 𝛿1 < 𝛿2, PartialOPT produces Θ𝑣1 =

{(𝑣0, 𝑣1), . . . , (𝑣0, 𝑣 |Γ |)}. We have Θ = Θ𝑣0 . When |Γ | = ℎ, Θ is the optimal solution, i.e., the approximation ratio is |Γ | − ℎ + 1 = 1. When
|Γ | > ℎ, we have Θ𝑂𝑃𝑇 = {(𝑣1, 𝑣 |Γ |+1)}, and

lim
𝛿2→0

𝑐𝜆 (Θ)
𝑐𝜆 (Θ𝑂𝑃𝑇)

=
|Γ | − ℎ + 1
1 + 𝛿2

= |Γ | − ℎ + 1. (24)

Hence, |Γ | − ℎ + 1 is the best possible approximation guarantee of PartialOPT. This theorem holds. □

9 THE TIME COMPLEXITY OF PartialOPT
Time complexity of PartialOPT:

𝑂
(
|𝑔𝑚𝑖𝑛 | ·

(
|Γ | |𝑉 | + 3ℎ |𝑉 | + 2ℎ (|𝐸 | + ℎ |𝑉 | + |𝑉 | log |𝑉 |)

))
.

It initializes Θ and finds 𝑔𝑚𝑖𝑛 in𝑂 (|Γ |) time. For each vertex in 𝑔𝑚𝑖𝑛 , it builds Γ1 and Γ2 in𝑂 (|Γ |) time (Line 4). It applies DPBF to produce Θℎ
𝑖

in𝑂 (3ℎ |𝑉 |+2ℎ (|𝐸 |+ℎ |𝑉 |+ |𝑉 | log |𝑉 |)) time (Line 5; details in [1]), and may invoke exIhlerA to produceΘ |Γ |
𝑖 in𝑂 ((|Γ |−ℎ) |𝑉 |+ |𝐸 |+ |𝑉 | log |𝑉 |)

time (Line 9; here, |𝑔𝑚𝑖𝑛 | in the time complexity of exIhlerA is 1, since Γ2 contains {𝑖}). After that, PartialOPT merges Θℎ
𝑖 and Θ

|Γ |
𝑖 (Line 11)

Figure 4: An example for showing the usefulness of the refinement process in ImprovAPP.

in 𝑂 (|𝑉 |) time, and computes an MST as Θ𝑖 (Line 12) in 𝑂 (|𝐸 | + |𝑉 | log |𝑉 |) time. It refines Θ𝑖 in 𝑂 (|Γ | |𝑉 | + |𝑉 | log |𝑉 |) time (Line 13), and
updates Θ in 𝑂 (|𝑉 |) time (Line 14).

10 AN EXAMPLE FOR ImprovAPP
Here, we show the usefulness of the refinement process (i.e., Lines 16-29) in ImprovAPP via a triangular graph in Figure 4. Let this triangular
graph be the input graph 𝐺 . There are three vertex groups: 𝑔1 = {𝑣1}, 𝑔2 = {𝑣3} and 𝑔3 = {𝑣2, 𝑣3}. Let the vertex weights be 𝑤 (𝑣1) = 2,
𝑤 (𝑣2) = 6 and𝑤 (𝑣3) = 6. Let the edge weights be 𝑐 (𝑣1, 𝑣2) = 2, 𝑐 (𝑣1, 𝑣3) = 8 and 𝑐 (𝑣2, 𝑣3) = 6. Let 𝜆 = 0.5. Suppose that ImprovAPP selects
𝑔1 as 𝑔𝑚𝑖𝑛 at Line 1. When it processes 𝑣1 ∈ 𝑔1 at Line 4, it pushes 𝐿𝑊𝑃𝜆𝑣1𝑔2 = {(𝑣1, 𝑣3)} and 𝐿𝑊𝑃𝜆𝑣1𝑔3 = {(𝑣1, 𝑣2)} into 𝑄 at Line 6. The
regulated weights of these two paths are 8 and 5, respectively. It first merges 𝐿𝑊𝑃𝜆𝑣1𝑔3 = {(𝑣1, 𝑣2)} into Θ𝑣1 at Line 9. Since the regulated
weight of path {(𝑣1, 𝑣3)} is smaller than the regulated weight of path {(𝑣2, 𝑣3)} (i.e., 8 is smaller than 9), it then merges {(𝑣1, 𝑣3)} into Θ𝑣1 at
Line 9. Thus, ImprovAPP builds Θ𝑚𝑖𝑛 = Θ𝑣1 = {(𝑣1, 𝑣2), (𝑣1, 𝑣3)}. However, since the weight of edge (𝑣2, 𝑣3) is smaller than the weight of
edge (𝑣1, 𝑣3) (i.e., 6 is smaller than 8), the MST that spans the vertices in Θ𝑚𝑖𝑛 is {(𝑣1, 𝑣2), (𝑣2, 𝑣3)}. Therefore, after the loop at Lines 4-15,
Θ𝑚𝑖𝑛 may not be an MST that spans the vertices in Θ𝑚𝑖𝑛 , which means that finding an MST at Line 16 is useful.

If the weight of edge (𝑣2, 𝑣3) is 9, then ImprovAPP builds Θ𝑚𝑖𝑛 = Θ𝑣1 = {(𝑣1, 𝑣2), (𝑣1, 𝑣3)}, and the MST that spans the vertices in Θ𝑚𝑖𝑛 is
still Θ𝑚𝑖𝑛 . However, 𝑣2 is not a unique-group leaf of this MST, and can be removed. Thus, after Line 16, it is not guaranteed that all leaves of
Θ𝑚𝑖𝑛 are unique-group leaves, which means that implementing Lines 17-29 to remove non-unique-group leaves is also useful.

11 THE RECENTWORK ON ENHANCING DPBF
The PrunedDP and PrunedDP++ algorithms in [2] enhance the DPBF algorithm in [1] for finding optimal vertex-unweighted group Steiner
trees. The main idea of this enhancement is to incorporate pruning techniques into the process of DPBF. In this section, we show that
PrunedDP and PrunedDP++ rely on pruning techniques that do not hold in graphs with vertex weights. For the sake of simplicity, we do not
use 𝜆 to regulate vertex and edge weights in the examples in this section, i.e., we sum vertex and edge weights directly when calculating the
weight of a tree. We use 𝑇 (𝑣, Γ) to signify the minimum-weight tree that roots at vertex 𝑣 and covers all vertex groups in Γ.
Theorem 2 in [2] does not hold in graphs with vertex weights. Theorem 2 in [2] is the core pruning technique in PrunedDP, and
is also an important pruning technique in PrunedDP++. This theorem does not hold in graphs with vertex weights. To explain, we first
briefly describe the dynamic programming process of DPBF through an example in Figure 5. Understanding this process is necessary for
understanding the reason why Theorem 2 in [2] does not hold in graphs with vertex weights.

In Figure 5, there are three vertex groups 𝑔1 = {𝑣1}, 𝑔2 = {𝑣2} and 𝑔3 = {𝑣3}. The weight of 𝑢 is 1, and each of the other vertex and edge
weights is 𝛿 , and 𝛿 is a tiny positive value. The optimal solution tree is the whole graph, and the weight of this tree is 1 + 6𝛿 (i.e., the sum of
vertex and edge weights). To find this tree, DPBF first initializes 𝑇 (𝑣1, {𝑔1}) as vertex 𝑣1; 𝑇 (𝑣2, {𝑔2}) as vertex 𝑣2; and 𝑇 (𝑣3, {𝑔3}) as vertex
𝑣3. Then, DPBF grows𝑇 (𝑣1, {𝑔1}),𝑇 (𝑣2, {𝑔2}) and𝑇 (𝑣3, {𝑔3}) to vertex 𝑢, and produces𝑇 (𝑢, {𝑔1}) as edge (𝑢, 𝑣1);𝑇 (𝑢, {𝑔2}) as edge (𝑢, 𝑣2);
and𝑇 (𝑢, {𝑔3}) as edge (𝑢, 𝑣3). Subsequently, it merges𝑇 (𝑢, {𝑔1}) and𝑇 (𝑢, {𝑔2}) as𝑇 (𝑢, {𝑔1, 𝑔2}) = {(𝑢, 𝑣1), (𝑢, 𝑣2)} (similarly, it also merges
𝑇 (𝑢, {𝑔1}) and 𝑇 (𝑢, {𝑔3}) as 𝑇 (𝑢, {𝑔1, 𝑔3}), and merges 𝑇 (𝑢, {𝑔2}) and 𝑇 (𝑢, {𝑔3}) as 𝑇 (𝑢, {𝑔2, 𝑔3})). At last, it produces the optimal solution
tree by merging 𝑇 (𝑢, {𝑔3}) and 𝑇 (𝑢, {𝑔1, 𝑔2}) (or 𝑇 (𝑢, {𝑔1}) and 𝑇 (𝑢, {𝑔2, 𝑔3}), or 𝑇 (𝑢, {𝑔2}) and 𝑇 (𝑢, {𝑔1, 𝑔3})).

Theorem 2 in [2] is that: in DPBF, we can merge two subtrees 𝑇 (𝑢, Γ′) and 𝑇 (𝑢, Γ′′) for Γ′′ ⊂ Γ \ Γ′ only when the total weight of these
two subtrees is not larger than 2

3 of the weight of an optimal solution tree. This theorem is true when vertex weights are omitted. For
example, if vertex weights are omitted in the above instance, then the weight of the optimal solution tree is 3𝛿 . When we merge 𝑇 (𝑢, {𝑔1})
and 𝑇 (𝑢, {𝑔2}) as 𝑇 (𝑢, {𝑔1, 𝑔2}) in the above process, the total weight of 𝑇 (𝑢, {𝑔1}) and 𝑇 (𝑢, {𝑔2}) is 2𝛿 , which is not larger than 2

3 of the
weight of an optimal solution tree. By Theorem 2 in [2], merging these two subtrees may help produce the optimal solution tree. If the total
weight of 𝑇 (𝑢, {𝑔1}) and 𝑇 (𝑢, {𝑔2}) is larger than 2

3 of the weight of an optimal solution tree, then merging these two subtrees does not
help produce the optimal solution tree, and thus this merge can be avoided. However, this is not true when vertex weights are considered.
For example, if we consider the vertex weights in the above instance, then the total weight of 𝑇 (𝑢, {𝑔1}) and 𝑇 (𝑢, {𝑔2}) is 2 + 4𝛿 (since the
weight of each of these two trees is 1 + 2𝛿), which is larger than 2

3 of the weight of an optimal solution tree: 1 + 6𝛿 (notably, even the weight
of𝑇 (𝑢, {𝑔1, 𝑔2}) = {(𝑢, 𝑣1), (𝑢, 𝑣2)}, which is 1 + 4𝛿 , is larger than 2

3 of the weight of an optimal solution tree). As a result, if we use Theorem
2 in [2] in the above instance with vertex weights, then the merge of 𝑇 (𝑢, {𝑔1}) and 𝑇 (𝑢, {𝑔2}) is not carried out (similarly, the merge of
𝑇 (𝑢, {𝑔1}) and 𝑇 (𝑢, {𝑔3}), or the merge of 𝑇 (𝑢, {𝑔2}) and 𝑇 (𝑢, {𝑔3}), is not carried out). Consequently, the optimal solution tree will never
be found. That is to say, Theorem 2 in [2] does not hold in graphs with vertex weights.

We point out the specific statement in the proof of Theorem 2 in [2] that does not hold in graphs with vertex weights as follows. In the
beginning of the proof of Theorem 2 in [2], an optimal solution is assumed to be a tree rooted at vertex 𝑢 with 𝑘 subtrees, 𝑇1, . . . ,𝑇𝑘 . Each

Figure 5: An example for showing Theorem 2 in [2]. Figure 6: An example for showing Lemmas 2 and 3 in [2].

subtree 𝑇𝑖 roots at vertex 𝑣𝑖 , and the weight of each subtree is smaller than half of the weight of an optimal solution tree (e.g., in Figure 5, 𝑇𝑖
is the single vertex 𝑣𝑖). Let 𝑇𝑖 be the the edge-grown subtree that is grown by 𝑇𝑖 with an edge (𝑣𝑖 , 𝑢) (e.g., in Figure 5, 𝑇𝑖 is the edge (𝑣𝑖 , 𝑢)).
The proof of Theorem 2 in [2] states that there are three different cases: (1) the weight of each 𝑇𝑖 is smaller than half of the weight of an
optimal solution tree; (2) there is only one edge-grown subtree 𝑇𝑖 that has a weight no smaller than half of the weight of an optimal solution
tree; and (3) there are two edge-grown subtrees and the weight of each one is half of the weight of an optimal solution tree. This statement is
not true in vertex-weighted scenarios, where there is a fourth case: there are more than two edge-grown subtrees such that the weight of
each one is large than half of the weight of an optimal solution tree. For example, in Figure 5, if we consider vertex weights, then the weight
of 𝑇1, 𝑇2 or 𝑇3 is 1 + 2𝛿 , which is larger than half of the weight of an optimal solution tree.
Lemmas 2 and 3 in [2] do not hold in graphs with vertex weights. Except Theorem 2 in [2], another important pruning technique in
PrunedDP++ is the tour-based lower bounds construction method for 𝐴∗-search. There are two types of tour-based lower bounds, which are
based on Lemmas 2 and 3 in [2], respectively. We show that these two lemmas do not hold in vertex-weighted scenarios as follows.

First, we introduce the label-enhanced graph in [2], which is constructed by adding dummy vertices and edges into the graph as follows.
For each group 𝑔𝑖 ∈ Γ, we add a dummy vertex 𝑣𝑖 , and also add a dummy edge (𝑣𝑖 , 𝑢) with zero weight for every 𝑢 ∈ 𝑔𝑖 . For example, in
Figure 6, the graph contains two vertices 𝑣 and 𝑢, and one edge (𝑣,𝑢), and there are three vertex groups 𝑔1 = 𝑔2 = 𝑔3 = {𝑢}. We add dummy
vertices 𝑣1, . . . , 𝑣3 and dummy edges (𝑣1, 𝑢), . . . , (𝑣3, 𝑢) for creating the label-enhanced graph. [2] uses𝑊 (𝑣𝑖 , 𝑣 𝑗 , Γ′) to refer to the weight of
the minimum-weight route that starts from 𝑣𝑖 , ends at 𝑣 𝑗 , and passes through all dummy vertices that correspond to vertex groups in Γ′.
Moreover, [2] uses 𝑑 (𝑣, 𝑣𝑖) to refer to the weight of the minimum-weight path between non-dummy vertex 𝑣 and dummy vertex 𝑣𝑖 .

Lemma 2 in [2] is that: for every pair of vertex 𝑣 ∈ 𝑉 and a subset of vertex groups Γ′ ⊆ Γ, the weight of𝑇 (𝑣, Γ′) is larger than or equal to

𝑙𝑏1 =
min𝑔𝑖 ,𝑔𝑗 ∈Γ′ {𝑑 (𝑣,𝑣𝑖)+𝑊 (𝑣𝑖 ,𝑣𝑗 ,Γ′)+𝑑 (𝑣𝑗 ,𝑣) }

2 . This lemma is true when all vertex weights are zero. For example, in Figure 6, let the weight of
edge (𝑣,𝑢) be 𝛿 , which is a tiny positive value, and all vertex weights be zero, and Γ′ = {𝑔1, 𝑔2}. Then, 𝑑 (𝑣, 𝑣1) = 𝑑 (𝑣2, 𝑣) = 𝛿 ,𝑊 (𝑣1, 𝑣2, Γ′) = 0,
and 𝑇 (𝑣, Γ′) is the edge (𝑣,𝑢). As a result, 𝑙𝑏1 = 𝛿 , which equals the weight of 𝑇 (𝑣, Γ′). Thus, Lemma 2 in [2] holds. This lemma is proven in
[2] by first doubling every edge in the label-enhanced 𝑇 (𝑣, Γ′) to obtain an Euler tour that starts from 𝑣 , ends at 𝑣 , and passes through all
dummy vertices that correspond to vertex groups in Γ′; and then employing the fact that the total edge weight (including duplicates) that
we encounter in this Euler tour is twice the total edge weight in 𝑇 (𝑣, Γ′). Nevertheless, Lemma 2 in [2] does not hold in vertex-weighted
scenarios. For example, in the above instance, let the weights of 𝑣 and 𝑢 be 0 and 1, respectively. Then, 𝑑 (𝑣, 𝑣1) = 𝑑 (𝑣2, 𝑣) = 1 + 𝛿 , and
𝑊 (𝑣1, 𝑣2, Γ′) = 1. As a result, 𝑙𝑏1 = 3+2𝛿

2 , which is larger than the weight of 𝑇 (𝑣, Γ′): 1 + 𝛿 . Thus, Lemma 2 in [2] does not hold any more.
The reason is that the above Euler tour encounters 𝑢 three times, and as a result the weight of 𝑢 is counted three times in 𝑙𝑏1. Generally
speaking, the total vertex and edge weight that we encounter in the Euler tour in the proof of Lemma 2 in [2] may be more than twice the
weight of 𝑇 (𝑣, Γ′), since this tour may visit a vertex in 𝑇 (𝑣, Γ′) more than twice. As shown in Section 2 in this supplement, for a similar
reason, LANCET does not have an approximation guarantee of 2.

Also for a similar reason, Lemma 3 in [2] does not hold in graphs with vertex weights. The details are as follows. [2] uses𝑊 (𝑣𝑖 , Γ′) to
refer to the weight of the minimum-weight route that starts from 𝑣𝑖 , and passes through all dummy vertices that correspond to vertex

groups in Γ′. Lemma 3 in [2] is that: the weight of 𝑇 (𝑣, Γ′) is larger than or equal to 𝑙𝑏2 =
max𝑔𝑖 ∈Γ′ {𝑑 (𝑣,𝑣𝑖)+𝑊 (𝑣𝑖 ,Γ′)+min𝑔𝑗 ∈Γ′ {𝑑 (𝑣𝑗 ,𝑣) }}

2 . This
lemma is true when all vertex weights are zero. Consider the above instance. If all vertex weights are zero, then 𝑑 (𝑣, 𝑣1) = 𝑑 (𝑣, 𝑣2) = 𝛿 ,
𝑊 (𝑣1, Γ′) =𝑊 (𝑣2, Γ′) = 0,min𝑔𝑗 ∈Γ′{𝑑 (𝑣 𝑗 , 𝑣)} = 𝛿 , and the weight of𝑇 (𝑣, Γ′) is 𝛿 . Consequently, 𝑙𝑏2 = 𝛿 , which equals the weight of𝑇 (𝑣, Γ′).
Thus, Lemma 3 in [2] holds. Like Lemma 2, Lemma 3 is proven in [2] by doubling every edge in the label-enhanced 𝑇 (𝑣, Γ′) to obtain an
Euler tour. Also like Lemma 2, since this tour may visit a vertex in 𝑇 (𝑣, Γ′) more than twice, Lemma 3 in [2] does not hold in graphs with
vertex weights. For example, suppose that, in Figure 6, the weights of 𝑣 and 𝑢 are 0 and 1, respectively. Then, 𝑑 (𝑣, 𝑣1) = 𝑑 (𝑣, 𝑣2) = 1 + 𝛿 ,
𝑊 (𝑣1, Γ′) =𝑊 (𝑣2, Γ′) = 1, min𝑔𝑗 ∈Γ′{𝑑 (𝑣 𝑗 , 𝑣)} = 1 + 𝛿 , and the weight of 𝑇 (𝑣, Γ′) is 1 + 𝛿 . As a result, 𝑙𝑏2 = 3+2𝛿

2 , which is larger than the
weight of 𝑇 (𝑣, Γ′). Thus, Lemma 3 in [2] does not hold any more.

Recall that (i) Theorem 2 in [2] is the core pruning technique in PrunedDP, and is also an important pruning technique in PrunedDP++;
and (ii) another important pruning technique in PrunedDP++ is the tour-based lower bounds construction method for 𝐴∗-search, and there
are two types of tour-based lower bounds, which are based on Lemmas 2 and 3 in [2], respectively. Since Theorem 2 and Lemmas 2 and 3 in
[2] do not hold in graphs with vertex weights, we do not implement PrunedDP and PrunedDP++ in our paper.

12 MEMORY CONSUMPTION RESULTS
Here, we evaluate the memory consumption of algorithms. The reported memory consumption of each algorithm contains the memory
consumed by each input of this algorithm (e.g., 𝐺 and Γ) as well as any other memory consumed in the process of this algorithm. We use

(a) Toronto (default values: |𝑉 | = 46073; |Γ | = 8; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3)

(b) DBLP (default values: |𝑉 | = 2497782; |Γ | = 6; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3)

(c) MovieLens (default values: |𝑉 | = 62423; |Γ | = 6; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3)
Figure 7: The memory consumption in the main experiments where vertex groups are selected uniformly.

(a) Toronto (default values: |𝑉 | = 46073; |Γ | = 8; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3)

(b) DBLP (default values: |𝑉 | = 2497782; |Γ | = 6; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3)

(c) MovieLens (default values: |𝑉 | = 62423; |Γ | = 6; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3)
Figure 8: The memory consumption in the main experiments where vertex groups are selected non-uniformly.

adjacency lists based on hashes to store graphs. Hashes consume more memories than arrays. Our purpose of using adjacency lists based on
hashes is to fully optimize the time complexities of algorithms.
The main experiments. We report the memory consumption results in the main experiments in our paper in Figures 7 and 8. We observe
that DPBF, Basic and Basic+ often consume more memory than the other non-exact algorithms (e.g., when varying |𝑉 | in Figure 7a), and the
memory consumption of DPBF, Basic and Basic+ often increases quickly with |Γ | (e.g., when varying |Γ | in Figure 7a). The reason is that,
except the 𝑂 (|𝑉 | + |𝐸 |) memory consumed by the input graph, DPBF, Basic and Basic+ additionally consume 𝑂 (2 |Γ | |𝑉 |) memory in the
dynamic programming process, while the other non-exact algorithms do not consume such an exponential amount of memory. Notably, the
memory consumption of DPBF, Basic and Basic+ does not grow much with |Γ | for MovieLens (e.g., when varying |Γ | in Figure 7c). The
reason is that theMovieLens graph is dense, and as a result the memory consumed by theMovieLens graph dominates the increase of the
𝑂 (2 |Γ | |𝑉 |) memory. Further note that, the non-exact algorithms may consume more memory than DPBF, Basic and Basic+ in some cases

Figure 9: Our extensions.
Figure 10: Varying ℎ. Figure 11: LANCET versus GKA.

(e.g., Figure 7c). The reason is that these non-exact algorithms build an additional graph that has (i) the same set of edges with the input
graph 𝐺 and (ii) newly defined edge weights for finding lowest weight paths in 𝐺 (see Section 3.2 in our paper on how to find lowest weight
paths), while DPBF, Basic and Basic+ do not build such an additional graph.

Since the dynamic programming process of Basic and Basic+ terminates earlier when 𝑟 is larger, the memory consumption of Basic and
Basic+ decreases with 𝑟 (e.g., when varying 𝑟 in Figure 7a). Notably, by incorporating pruning techniques, Basic and Basic+ enumerate fewer
trees than DPBF in the dynamic programming process. As a result, Basic and Basic+ may consume a smaller amount of memory than DPBF
(e.g., when |𝑉 | = 0.3𝑀 in Figure 7b). However, DPBF may consume a smaller amount of memory than Basic and Basic+ in some cases (e.g.,
when |Γ | = 6 in Figure 7a). There are two reasons. First, Basic and Basic+ store the lowest weight paths between vertices and vertex groups,
while DPBF does not store these paths. Second, all these three algorithms iteratively pop trees out of a min priority queue. Basic and Basic+
record trees that have been popped out (details in [2]), while DPBF does not record these trees.
Our extensions. We compare the memory consumption of ENSteiner, IhlerA, exENSteiner and exIhlerA in Figure 9, where vertex groups
are selected via the uniform approach, and the parameter settings are: for Toronto, |𝑉 | = 46073, |Γ | = 8, 𝜆 = 0.33; for DBLP, |𝑉 | = 2497782,
|Γ | = 6, 𝜆 = 0.33; for MovieLens, |𝑉 | = 2423, |Γ | = 6, 𝜆 = 0.33 (this corresponds to the experiments in Figure 3 in our paper). We observe that
exENSteiner and exIhlerA may consume slightly more memory than ENSteiner and IhlerA, respectively. The reason is that exENSteiner and
exIhlerA build an additional graph for finding lowest weight paths (as discussed above). In comparison, ENSteiner and IhlerA do not build
such an additional graph for finding shortest paths.
Varying ℎ in PartialOPT. We report the memory consumption of PartialOPT with respect to ℎ in Figure 10, where the Toronto data is
used, vertex groups are selected via the uniform approach, |𝑉 | = 46073, |Γ | = 6, 𝜆 = 0.33 (this corresponds to the experiments in Figure 7 in
our paper). We observe that the memory consumed by PartialOPT grows quickly with ℎ. The reason is that PartialOPT employs DPBF to
connect ℎ vertex groups optimally, and the space complexity of this process is 𝑂 (2ℎ |𝑉 |).
Comparing LANCET with GKA. We compare the memory consumption of LANCET and GKA in Figure 11, where the Toronto data is
used, vertex groups are selected via the uniform approach, 𝜆 = 0.33, |Γ | = |𝑇𝑡 | = 6 (this corresponds to the experiments in Figure 8 in our
paper). We observe that the memory consumption of GKA increases quickly with |𝑉 |. The reason is that GKA stores the lowest weight
paths between all pairs of vertices, which has a space complexity of 𝑂 (|𝑉𝑡 |2), where |𝑉𝑡 | = |𝑉 | + |Γ |. In comparison, LANCET only stores the
lowest weight paths from compulsory vertices to the other vertices, which has a space complexity of 𝑂 (|𝑇𝑡 | |𝑉𝑡 |) (see Line 3 of LANCET).

13 REFINING THE SOLUTIONS OF exENSteiner, exIhlerA AND FastAPP
There is a solution refinement process in ImprovAPP, i.e., Lines 17-29 in ImprovAPP. This process refines a sub-optimal solution by removing
non-unique-group leaves from this solution. Here, we use this process to refine the solutions of exENSteiner, exIhlerA and FastAPP. Notably,
this process has already been incorporated into PartialOPT (i.e., Line 13 in PartialOPT). Thus, we do not refine the solutions of PartialOPT
here. We report the refinement results in Figures 12 and 13, where exENSteiner+R, exIhlerA+R and FastAPP+R are the refinements of
exENSteiner, exIhlerA and FastAPP, respectively.

Suppose that there is a feasible solution tree Θ(𝑉Θ, 𝐸Θ). Then, the time complexity of refining this solution is 𝑂 (|Γ | |𝑉Θ | + |𝑉Θ | log |𝑉Θ |)
(details in Section 4.3 in our paper). Since we generally have |𝑉Θ | ≪ |𝑉 | in practice, the running times of refinement are negligible when
comparing to the running times of our algorithms. For example, each of our algorithms takes around 100s to produce a feasible solution in
the full DBLP graph, while it only takes around 2ms to refine this solution. Thus, we only evaluate the solution qualities in Figures 12 and 13,
and do not evaluate the running times of refinement. We observe that ImprovAPP dominates exENSteiner+R, exIhlerA+R and FastAPP+R on
solution qualities. We also observe that the refinement is often more effective when vertex groups are selected non-uniformly. For example,
the refinement is more effective in Figure 13d than in Figure 12d. The reason is that, when vertex groups are selected non-uniformly, the
sizes of the selected vertex groups are often larger, and as a result the leaves in the feasible solutions produced by exENSteiner, exIhlerA and
FastAPP are more likely to be non-unique-group leaves.

REFERENCES
[1] Bolin Ding, Jeffrey Xu Yu, Shan Wang, Lu Qin, Xiao Zhang, and Xuemin Lin. 2007. Finding top-k min-cost connected trees in databases. In IEEE International Conference on Data

Engineering. IEEE, 836–845.
[2] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. 2016. Efficient and progressive group Steiner tree search. In Proceedings of the 2016 International Conference on Management of

Data. ACM, 91–106.
[3] Hiromitsu Takahashi and Akira Matsuyama. 1980. An approximate solution for the Steiner problem in graphs. Math. Japonica 24, 6 (1980), 573–577.

(a) Toronto (|Γ | = 8; 𝜆 = 0.33) (b) Toronto (|𝑉 | = 46073; 𝜆 = 0.33) (c) Toronto (|𝑉 | = 46073; |Γ | = 8)

(d) DBLP (|Γ | = 6; 𝜆 = 0.33) (e) DBLP (|𝑉 | = 2497782; 𝜆 = 0.33) (f) DBLP (|𝑉 | = 2497782; |Γ | = 6)

(g) MovieLens (|Γ | = 6; 𝜆 = 0.33) (h)MovieLens (|𝑉 | = 62423; 𝜆 = 0.33) (i)MovieLens (|𝑉 | = 62423; |Γ | = 6)
Figure 12: The refinement results in the main experiments where vertex groups are selected uniformly.

(a) Toronto (|Γ | = 8; 𝜆 = 0.33) (b) Toronto (|𝑉 | = 46073; 𝜆 = 0.33) (c) Toronto (|𝑉 | = 46073; |Γ | = 8)

(d) DBLP (|Γ | = 6; 𝜆 = 0.33) (e) DBLP (|𝑉 | = 2497782; 𝜆 = 0.33) (f) DBLP (|𝑉 | = 2497782; |Γ | = 6)

(g) MovieLens (|Γ | = 6; 𝜆 = 0.33) (h)MovieLens (|𝑉 | = 62423; 𝜆 = 0.33) (i)MovieLens (|𝑉 | = 62423; |Γ | = 6)
Figure 13: The refinement results in the main experiments where vertex groups are selected non-uniformly.

