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ABSTRACT The operational cost-effectiveness of wireless sensor networks depends on the placement of
heterogeneous nodes: base stations, sensor nodes, and relay nodes. To achieve the global optimality of
minimum-cost heterogeneous node placement, we find the locations of base stations, sensor nodes, and relay
nodes, simultaneously. The objective is to minimize the sum of node production and placement costs and
transmission outage probabilities in the routing tree. First, we formulate this minimum-cost heterogeneous
node placement problem as a new NP-hard Steiner tree problem. Then, to solve this problem for both small
and large instances, we propose an exponential-time exact algorithm, a polynomial-time heuristic algorithm,
and several post-processing algorithms. On a personal computer, our exact algorithm is sufficiently fast
to produce optimal solutions for small instances with dozens of vertices, while our heuristic and post-
processing algorithms can, respectively, produce and improve suboptimal solutions for large instances with
100 000 vertices and 1 000 000 edges within 6 s. We also compare the heuristic and optimal solutions for
small instances with dozens of vertices and show that the ratios between the respective solution costs are
generally below 1.35, and our post-processing algorithms can improve this number to 1.1. This indicates that
our heuristic and post-processing algorithms are likely to produce near-optimal solutions in practice and are
useful for minimum-cost heterogeneous node placement when computational resources are scarce.

INDEX TERMS Steiner tree problem, wireless sensor network, Internet of Things.

I. INTRODUCTION
Wireless Sensor Networks (WSNs) are eyes and ears of the
emerging Internet of Things (IoTs). There are typically three
types of devices in them: base stations, sensor nodes, and
relay nodes. Sensor nodes are used to sense targets, while
relay nodes help them transmit data to base stations. Given
that the locations of devices determine the network topology
and operation, node placement is crucial in minimizing the
cost of WSNs.

Many node placement approaches and techniques have
been developed in the last decade. They generally focus
on placing heterogeneous nodes separately to increase the
network coverage, connectivity, lifetime, cost-effectiveness,
and/or boost the data fidelity (e.g. the base station place-
ment techniques in [1] and [2]; the sensor node placement
techniques in [3] and [4]; the relay node placement tech-
niques in [5]–[8]; and the surveys in [9] and [10]). However,
in practice, the placements of heterogeneous nodes entangle
with each other, and it may be preferable to conduct them
simultaneously. For instance, in the separate node placement

approach in Figure 1, four sensor nodes are first placed to
cover the targets; a base station is then placed in the mid-
dle of them to minimize the average transmission distance;
this base station is not within the transmission range of any
sensor node, thus two relay nodes are required to achieve
the network connectivity; while in the simultaneous node
placement approach in Figure 1, all the nodes are placed
simultaneously; the base station is within the transmission
ranges of two left sensor nodes, thus only one relay node
is required to perform the same task. Hence, simultaneous
node placement has intuitive advantages over separate node
placement in minimizing the cost of WSNs. Nonetheless,
hardly any work has been done to explore simultaneous node
placement to date. In this paper, we address this issue by
finding the locations of base stations, sensor nodes, and relay
nodes simultaneously for minimum-cost heterogeneous node
placement.

On the other hand, Steiner tree problems are well-known
NP-hard problems of designing minimum-cost networks.
Thus, Steiner tree problems and algorithms may inspire
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FIGURE 1. The comparison of separate and simultaneous node placement
approaches. The trefoil symbols are targets; the red triangles are base
stations; the green dots are sensor nodes; the blue boxes are relay nodes;
the gray lines are transmission routes; the gray shadows and orange
circles are respectively sensing and transmission ranges of sensor nodes.

minimum-cost heterogeneous node placement. There are two
classes of Steiner tree problems: Steiner tree problems in geo-
metric spaces (e.g. [11]) and Steiner tree problems in graphs
(e.g. [12]). The vertices in Steiner tree problems in geometric
spaces can be placed anywhere in the given geometric space,
while those in Steiner tree problems in graphs can only be
placed at pre-determined candidate locations. Given that node
placement regions are usually constrained in reality [13],
we focus on Steiner tree problems in graphs in this paper.

The classical Steiner tree problem in graphs [14] is about
finding the minimum-cost tree in a graph to connect some
compulsory vertices together. If we use compulsory vertices
to represent devices that must be connected; use other vertices
to represent candidate devices that may not be connected;
use edges to represent transmission routes between devices;
use node weights to represent node production and placement
costs, then we can minimize the sum of node production and
placement costs by finding minimum Steiner trees. Further-
more, if we use edge costs to represent outage probabilities
of transmission routes, then we can minimize the sum of
transmission outage probabilities in the routing tree, and thus
enhance the Quality of Service (QoS) [5].

The connectivity and coverage requirements are two basic
requirements in designing WSNs. The connectivity require-
ment, which is about connecting all the devices together, can
be naturally met through the Steiner tree approach mentioned
above, as Steiner trees are connected. However, the coverage
requirement, which is about connecting enough sensor nodes
to base stations to cover all the targets, is hard to be met.
An easy way to meet this requirement is to make all the can-
didate base stations and sensor nodes compulsory. This suits
separate relay node placement where base stations and sensor
nodes are pre-deployed (e.g. [5]–[7]), while it does not suit
simultaneous node placement, as not all the candidate sensor
nodes and base stations are required. For example, in the
Steiner tree in Figure 1, some redundant base stations and
sensor nodes are connected tomeet the coverage requirement.

We observe that the group Steiner tree problem [15], which
is a more general version of the classical Steiner tree problem
in graphs, can be exploited to overcome this weakness. It is
about finding the minimum-cost tree in a graph to connect at
least one vertex in each group of vertices. If we add a group
that contains all the candidate base stations; and associate
each target with a group that contains all the adjacent candi-
date sensor nodes, thenwe canmeet the coverage requirement
without deploying redundant base stations and sensor nodes.
For example, in the group Steiner tree in Figure 1, we add
three groups that respectively contain two left sensor nodes,
two right sensor nodes and two base stations, then the group
Steiner tree connects a single sensor node to cover each target
and a single base station to contact users.

Nevertheless, there is no node weight in the existing group
Steiner tree problems to represent node production and place-
ment costs (e.g. [16], [17]). Thus, new node-weighted group
Steiner tree problems are required for our application, and
new Steiner tree algorithms are also required to solve them.
Like other NP-hard problems, different Steiner tree algo-
rithms are used for small and large instances: exact algo-
rithms are often used to produce optimal solutions for small
instances (e.g. [18]), while heuristic and post-processing
algorithms are often combined together to produce fast
suboptimal solutions for large instances (e.g. [19]), where
heuristic algorithms produce fast suboptimal solutions and
post-processing algorithms improve these solutions. In this
paper, we will develop all these types of algorithms for our
application.

In summary, our major contributions are listed as follows:
• we formulate the minimum-cost heterogeneous node
placement problem as the new Node-Weighted Full
Group Steiner Tree Problem (NWFGSTP). To our
knowledge, this is the first formulation that places base
stations, sensor nodes and relay nodes simultaneously.

• we propose an exponential-time exact algorithm to
produce optimal solutions to NWFGSTP for small
instances.

• we propose a polynomial-time heuristic algorithm to
produce heuristic solutions to NWFGSTP for large
instances.

• we propose several polynomial-time post-processing
algorithms to improve suboptimal solutions to
NWFGSTP for large instances.

II. PROBLEM FORMULATION AND DISCUSSION
In this section, we formulate the minimum-cost heteroge-
neous node placement problem as NWFGSTP. We consider
two types ofWSNs: single-tiered and two-tiered. Both sensor
and relay nodes can relay data in single-tiered WSNs, while
only relay nodes can do this in two-tiered ones. As a result,
there is no transmission route between sensor nodes in two-
tiered WSNs. Suppose that all the devices and targets are
stationary. Let B, S,R,3 be the sets of base stations, sensor
nodes, relay nodes, and targets respectively. Let d(i, j) be
the euclidean distance between devices i, j, and ri, rj be the
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transmission ranges of devices i, j respectively. We define
the Single-tiered Communication Graph (SCG) and the Two-
tiered Communication Graph (TCG) as follows.
Definition 1 (The Single-Tiered Communication Graph):

The Single-tiered Communication Graph SCG(V ,E,w, c) is
an undirected graph, where V is the set of vertices such that
V = B∪S∪R; E is the set of edges such that edge (i, j) ∈ E if
d(i, j) ≤ min{ri, rj}; w is a function which maps each vertex
i ∈ V to a value w(i) that equals the sum of its production and
placement costs; and c is a function which maps each edge
e ∈ E to a value c(e) that equals its outage probability.
Definition 2 (The Two-Tiered Communication Graph):

The Two-tiered Communication Graph TCG(V ,E,w, c) is an
undirected graph, where V is the set of vertices such that
V = B∪ S ∪R; E is the set of edges such that edge (i, j) ∈ E
if |{i, j} ∩ S| < 2 and d(i, j) ≤ min{ri, rj}; w is a function
which maps each vertex i ∈ V to a value w(i) that equals the
sum of its production and placement costs; and c is a function
which maps each edge e ∈ E to a value c(e) that equals its
outage probability.

The production and placement costs of devices and the
outage probabilities of transmission routes are needed to
construct SCGs and TCGs (e.g. Figure 2). Since we assume
that all the devices are stationary, it may be trivial to acquire
the production and placement costs of devices in practice.
For example, we can consider the production costs of devices
as their selling prices on the market, and their placement
costs as the prices of hiring people to install them at cer-
tain fixed locations. On the other hand, it may not be easy
to acquire the outage probabilities of transmission routes.
Recently, Bagaa et al. [5] developed a practical model to do
this, and they minimized the outage probabilities of trans-
mission routes in the routing tree for relay node placement.
In this paper, we mainly focus on the development of node
placement algorithms, and assume that the production and
placement costs of devices and the outage probabilities of
transmission routes are already acquired.

Since minimizing the production and placement costs of
nodes allows us to design cheap WSNs; and minimizing the
outage probabilities of transmission routes in the routing tree
allows us to enhance the QoS [5], we define the minimum-
cost relay node placement problems as follows.

FIGURE 2. Examples of Single-tiered and Two-tiered Communication
Graphs. The trefoil symbols are targets; the red triangles are base
stations; the green dots are sensor nodes; the blue boxes are relay nodes;
and the gray lines are transmission routes. Each target is associated with
a purple shadow grouping its adjacent sensor nodes. All the base stations
are also grouped in a purple shadow.

Definition 3 (The Single-Tiered Minimum-Cost Heteroge-
neous Node Placement Problem): Given an SCG(V ,E,w, c),
the single-tiered minimum-cost heterogeneous node place-
ment problem is to deploy some devices V ′ ⊆ V in such
a way that: 1) each target is covered by a sensor node in
V ′; 2) there is at least one base station in V ′; 3) there is a
route between each sensor node and a base station in a tree
SCG′(V ′,E ′,w, c),E ′ ⊆ E; and 4)

∑
e∈E ′ c(e)+

∑
v∈V ′ w(v)

is minimized.
Definition 4 (The Two-Tiered Minimum-Cost Heteroge-

neous Node Placement Problem): Given a TCG(V ,E,w, c),
the two-tiered minimum-cost heterogeneous node placement
problem is to deploy some devices V ′ ⊆ V in such a way
that: 1) each target is covered by a sensor node in V ′;
2) there is at least one base station in V ′; 3) there is a
route between each sensor node and a base station in a
tree TCG′(V ′,E ′,w, c),E ′ ⊆ E, and no sensor node is in
the middle of this route; and 4)

∑
e∈E ′ c(e) +

∑
v∈V ′ w(v) is

minimized.
To solve theminimum-cost relay node placement problems

above, we define NWFGSTP as follows.
Definition 5 (The Node-Weighted Full Group Steiner Tree

Problem): Let G(V ,E, 0,L,w, c) be a connected undirected
graph, where V is the set of vertices, E is the set of edges, 0 is
a collection of subsets of V called groups, L is a subset of V
called leaf vertices, w is a function which maps each vertex
in V to a nonpositive value called node weight, and c is a
function which maps each edge in E to a nonnegative value
called edge cost. The purpose is to find a connected subgraph
G′(V ′,E ′,w, c),V ′ ⊆ V , E ′ ⊆ E with the minimum net-cost
c(G′) =

∑
e∈E ′ c(e)−

∑
v∈V ′ w(v), and for each group g ∈ 0,

g ∩ V ′ 6= ∅; for each leaf vertex i ∈ L, if i ∈ V ′, then i is a
leaf of G′.
The optimal solution to NWFGSTP is called Full Group

Steiner Minimum Tree (FGSMT). NWFGSTP is a more gen-
eral version of the classical group Steiner tree problem. Since
the classical group Steiner tree problem is NP-hard [15],
NWFGSTP is also NP-hard. The reason why node weights
are nonpositive in NWFGSTP is that, we aim to minimize
the node production and placement costs, while positive node
weights are oftenmaximized inwell-known Steiner tree prob-
lems (e.g. [20], [21]). If we associate each target with a group
that contains all the adjacent candidate sensor nodes; and add
a group that contains all the candidate base stations, then
we can solve the single-tiered minimum-cost heterogeneous
node placement problem by solving NWFGSTP in SCGs.
Given that sensor nodes in two-tiered WSNs cannot relay
data and thus are leaves in the routing tree, if we further use
leaf vertices to represent sensor nodes, i.e., L = S, then
we can solve the two-tiered minimum-cost heterogeneous
node placement problem by solving NWFGSTP in TCGs.
By doing this, the sum of node production and placement
costs and transmission outage probabilities in the routing tree
can be minimized. Our approach has advantages over the
existing ones in that we can find the locations of base stations,
sensor nodes, and relay nodes simultaneously to achieve
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the global optimality of minimum-cost heterogeneous node
placement.

III. SOME THEORETICAL ANALYSES ON NWFGSTP
In this section, we conduct some theoretical analyses on
NWFGSTP. First, we prove that the leaf constraint of sensor
nodes in two-tiered WSNs, i.e., the constraint of L, increases
the node placement cost. Then, we analyze the feasibility of
two-tired WSNs by analyzing the solvability of NWFGSTP.

Single-tiered WSNs require less relay nodes to achieve the
network connectivity than two-tiered ones, as their sensor
nodes can relay data. Consequently, it may be preferable to
apply the single-tiered routing topology when sensor nodes
are energy-sufficient and their transmission outage probabil-
ities are small. We prove this as follows. First, we remove the
constraint of L from NWFGSTP to propose a new problem:
the Node-Weighted Group Steiner Tree Problem (NWGSTP),
for which the optimal solution is called Group Steiner Min-
imum Tree (GSMT). Clearly, GSMT and FGSMT (L 6= ∅)
respectively correspond to the minimum-cost single-tiered
and two-tiered WSNs. We propose the theorem below to
compare their costs.
Theorem 1: If there are feasible solutions to NWFGSTP

in graph G(V ,E, 0,L,w, c), then c(2GSMT ) ≤ c(2FGSMT ),
where 2GSMT and 2FGSMT are respectively the GSMT and
FGSMT in G.

Since a feasible solution to NWFGSTP is also a feasible
solution to NWGSTP, this theorem can be easily proven.
It indicates that the leaf constraint of sensor nodes in two-
tiered WSNs increases the node placement cost.

It may still be preferable to deploy two-tiered WSNs when
sensor nodes are not robust or powerful enough to relay data.
There are feasible two-tired WSNs only when NWFGSTP
(L 6= ∅) is solvable in TCGs. Here, we check the existence
of feasible two-tired WSNs by analyzing the solvability of
NWFGSTP (L 6= ∅). First, we show the solvability of
NWFGSTP (L 6= ∅) in general graphs as follows.
Theorem 2: There is a feasible solution to NWFGSTP in

graph G(V ,E, 0,L,w, c) if and only if at least one of the
three following conditions is met: 1) there is a vertex i such
that i ∈ g | ∀ g ∈ 0; 2) there is an edge (i, j) such that iõr j ∈
g | ∀ g ∈ 0; 3) there is a vertex i ∈ V \ L such that, for
every group g ∈ 0, i is connected with a vertex j ∈ g in graph
G \ (L \ j).

Proof: If the first condition is met, vertex i is a feasible
solution; if the second condition is met, edge (i, j) is a feasible
solution; if the third condition is met,

∑
g∈0 Pij is a feasible

solution, where Pij is a path between i, j such that vertex
k /∈ L | ∀ k ∈ Pij, k 6= j. Therefore, if at least one of the three
conditions is met, there is a feasible solution to NWFGSTP in
G. On the other hand, suppose that there is a feasible solution
in G, but none of the three conditions is met. In this case, this
feasible solution must contain at least three vertices, which
means that at least one of them is not a leaf. Without loss
of generality, assume that vertex i is in this feasible solution;
i ∈ V \L; and it is not a leaf. Then, there is a vertex j ∈ g ∈ 0

such that a leaf vertex k ∈ L lies between i and j in this
feasible solution, which is not possible. Thus, if there is a
feasible solution to NWFGSTP in G, at least one of these
three conditions is met. Hence, this theorem holds. �
Since the time complexity to check vertex i ∈ V \ L

is O(|V |); to check graph G \ (L \ j) is O(|V |); to check
graph connectivity is O(|V | + |E|) (Tarjan’s algorithm [22]),
the time complexity to check the solvability of NWFGSTP
(L 6= ∅) using Theorem 2 is O(|V |3 + |E||V |2). Therefore,
it is tremendously slow to do this in large graphs. Instead,
we observe that there is an easier way to check the solvability
of NWFGSTP (L 6= ∅) in TCGs for our application.
Theorem 3: Given a connected Two-tiered Communica-

tion Graph G(V ,E, 0,L,w, c) where L = S. If G \ L is
connected, then there is a feasible solution to NWFGSTP
in G.

Since every sensor node i ∈ S = L directly connects
G \ L in TCGs, Theorem 3 can be easily proven. The time
complexity to check the solvability of NWFGSTP (L 6= ∅)
using Theorem 3 is O(|V | + |E|). Therefore, it is faster to
implement it for our application. In our later computational
trials, we will use Theorem 3 to guarantee that there are
feasible two-tired WSNs in our generated TCGs (there is no
need to do this in SCGs).

IV. THE PROPOSED POST-PROCESSING ALGORITHMS
It may only be possible to produce suboptimal solutions to
NWFGSTP when the number of candidate devices in WSNs
is large. In this section, we propose some post-processing
algorithms to improve suboptimal solutions to NWFGSTP.

A. THE PROPOSED GROUP PRUNING ALGORITHM (GPA)
Here, we propose the Group Pruning Algorithm (GPA;
Algorithm 1) to improve suboptimal solutions to NWFGSTP
by pruning expensive vertices and edges, i.e., removing
expensive devices from WSNs. For example, if there are two
sensor nodes that are performing the same task, then we can
remove the expensive one from WSNs. First, we formulate
this pruning problem as the Node-Weighted Group Steiner
Tree Problem in Trees (NWGSTPT), which is a special case
of NWFGSTP where the input graph G is a tree and L = ∅.
Consider 2 as a suboptimal solution to NWFGSTP, then
solving NWGSTPT in 2 is equivalent to improving this
solution by pruning expensive vertices and edges. Note that,
this is also true when L 6= ∅ in NWFGSTP since pruning
vertices and edges from a suboptimal solution to NWFGSTP
does not turn leaf vertices in L into non-leaf vertices. Ihler
et al. [15] showed that the group Steiner tree problem in
trees is NP-hard. Since NWGSTPT is a more general case
of the group Steiner tree problem in trees, NWGSTPT is also
NP-hard. Our proposed GPA is a polynomial-time heuristic
algorithm for solving it. Before introducing GPA, we propose
two theorems as follows. Their proofs are trivial and thus are
omitted.
Theorem 4: If a vertex is the only vertex that is in a group,

then this vertex is in the FGSMT.
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Algorithm 1 The Proposed Group Pruning Algorithm (GPA)
Input: a solution tree 2(V ′,E ′, 0,L,w, c)
Output: an improved solution tree 2p(V ′′,E ′′)
1: Initialize a max priority queue PQ
2: if there is no compulsory vertex then
3: Mark all the leaves of 2 as unchecked
4: while there is no compulsory vertex do
5: while there are unchecked leaves do
6: for unchecked leaf i do
7: Mark i as checked
8: if i is a group vertex then
9: Push i into PQ; priority: c(i, vadj)− w(i)
10: else
11: Find its closest junction/group predecessor j
12: Prune the branch rooted at j
13: if j is a leaf then
14: Mark j as unchecked
15: end if
16: end if
17: end for
18: end while
19: if PQ is not empty then
20: Prune edge (vtop, vadj) from 2

21: if vadj is a leaf then
22: Mark vadj as unchecked
23: end if
24: Pop vtop out of PQ
25: end if
26: end while
27: end if
28: Select a compulsory vertex as the root r
29: Mark all the vertices as untagged
30: Tag r : tag(r) = 0
31: while there are untagged vertices do
32: for untagged j adjacent to tagged vadj do
33: if vadj is a junction or group vertex then
34: Tag j: tag(j) = c(vadj, j)− w(j)
35: else
36: Tag j: tag(j) = tag(vadj)+ c(vadj, j)− w(j)
37: end if
38: end for
39: end while
40: Clear PQ
41: Mark all the leaves of 2 as unchecked
42: while there are non-compulsory leaves do
43: while there are unchecked leaves do
44: for unchecked leaf i do
45: Mark i as checked
46: if i is a group vertex then
47: if i is a compulsory vertex then
48: Continue
49: else
50: Push i into PQ with priority tag(i)
51: end if
52: else

53: Find its closest junction/group predecessor j
54: Prune the branch rooted at j
55: if j is a leaf then
56: Mark j as unchecked
57: end if
58: end if
59: end for
60: end while
61: if PQ is not empty then
62: if vtop is not compulsory then
63: Prune edge (vtop, vadj) from 2

64: if vadj is a leaf then
65: Mark vadj as unchecked
66: end if
67: end if
68: Pop vtop out of PQ
69: end if
70: end while
71: 2p = 2

Theorem 5: Every leaf of an FGSMT is the only vertex in
this FGSMT that is in a group.

Let 2 be the input tree of GPA. First, we initialize a max
priority queue PQ (Step 1). Then, we apply Theorem 4 to
identify compulsory vertices in 2. If there is no compulsory
vertex, then we implement the following steps (Steps 3-26)
to heuristically prune 2 until a compulsory vertex is
obtained.

We mark all the leaves of 2 as unchecked (Step 3). For
each unchecked leaf i, we distinguish two cases to check it:
Case 1: i is a group vertex, i.e., it is in a group. Since it

may be cheaper to keep i than to keep other vertices in the
same group, we cannot prune i at this stage. Thus, we push
i into PQ for future comparison (Step 9), and its priority is
c(i, vadj)−w(i), where vadj is the adjacent vertex of i. Clearly,
this priority is a lower-bound of the cost to keep i in 2.

Case 2: i is not a group vertex. Since w(i) ≤ 0, we can sim-
ply prune edge (i, vadj) from 2. Nevertheless, vadj may also
be a non-group leaf that can be pruned, and it is tremendously
slow to prune such vertices one by one. Therefore, we find i’s
closest junction/group predecessor j (Step 11; a vertex whose
degree is larger than 2 is a junction vertex), and then prune
the branch rooted at j (Step 12). If j becomes a leaf, then we
mark j as unchecked (Step 14).

We iterate the process above until all the leaves have been
checked (Step 5), which means that all the leaves are now
group vertices that have been pushed intoPQ. Note that, since
a single vertex may be left after this process as a feasible
solution to NWGSTPT, PQmay be empty. If PQ is not empty
(Step 19), we prune edge (vtop, vadj) from2 (Step 20), where
vtop is the top vertex in PQ and vadj is its adjacent vertex. The
logic is that it is probably more expensive to keep vtop in 2
than to keep other group leaves in PQ. If vadj becomes a leaf,
then we mark it as unchecked (Step 22), and check it later
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in the same way above. After that, we pop vtop out of PQ
(Step 24). This pruning process ends when a compulsory
vertex is obtained (Step 4).

Note that, this pruning process is heuristic since the
pruned vtop may be in the FGSMT. Since the time com-
plexities to insert and pop out elements for priority queues
are respectively O(1) and O(log|V ′|) (Fibonacci heaps [23]),
this pruning process has a polynomial-time complexity of
O(|V ′|log|V ′|) (in the extreme scenario, all the vertices in 2
will be pushed into a priority queue, and the time complexity
to pop them out of the queue isO(log|V ′|!) ≈ O(|V ′|log|V ′|);
Stirling’s approximation [24]). Since NWGSTPT is NP-hard,
it is unlikely to make this pruning process optimal while
keeping a polynomial time complexity. Hence, we keep this
pruning process as simple as that above to make GPA fast.
With the obtained compulsory vertex, we apply a more accu-
rate pruning process as follows.

We randomly select a compulsory vertex as the root r
(Step 28; there may be multiple compulsory vertices ini-
tially). Then, we calculate the cost of the path from each
vertex to the most adjacent group or junction vertex towards
the root. To calculate such costs for every vertex in 2, first,
wemark all the vertices as untagged (Step 29); second, we tag
r with a value tag(r) = 0 (Step 30); third, for each untagged
vertex j which is adjacent to a tagged vertex vadj, we itera-
tively tag jwith a value until all the vertices have been tagged
(Steps 31-39): if vadj is a junction or group vertex, tag(j) =
c(vadj, j)−w(j), otherwise tag(j) = tag(vadj)+c(vadj, j)−w(j).
Clearly, for each vertex i, tag(i) is the cost of the path from
i to the most adjacent group or junction vertex towards the
root. This cost is a tighter lower-bound of the cost to keep i
in 2 than c(i, vadj) − w(i) in Step 9. The time complexity of
this calculation is O(|V ′|). It may be worth mentioning that
new tighter lower-bounds of such costs can be explored in the
future to improve GPA for applications that are not sensitive
to speed.

After tagging all the vertices, we prune 2 using these
tagged values (Steps 40-70). First, we clear PQ (Step 40).
Then, we mark all the leaves of 2 as unchecked (Step 41).
For unchecked leaf i, we distinguish three cases to check it:
Case 1: i is a compulsory vertex. We continue (Step 48).
Case 2: i is a non-compulsory group vertex. We push i into

PQ with priority tag(i) (Step 50).
Case 3: i is not a group vertex. We find its closest junc-

tion/group predecessor j (Step 53), and then prune the branch
rooted at j (Step 54). If j becomes a leaf, we mark it as
unchecked (Step 56).

We iterate the process above until all the leaves have been
checked (Step 43), which means that all the leaves are now
group vertices that are either compulsory or non-compulsory
but have been pushed into PQ. It can be seen from Theo-
rem 5 that all the non-compulsory group leaves can be pruned
from2. The priorities of these non-compulsory group leaves
in PQ are the heuristic costs to keep them in 2. Therefore,
we first check vtop. If vtop is not a compulsory vertex, then
we prune edge (vtop, vadj) from 2 (Step 63). If vadj becomes

a leaf, then we mark vadj as unchecked (Step 65). After that,
we pop vtop out of PQ (Step 68). Note that, even though we
only push non-compulsory group leaves into PQ (Step 50),
vtop may still be a compulsory vertex. The reason is that
pruning edge (vtop, vadj) from2may induce new compulsory
vertices. Thus, we need to check whether vtop is a compulsory
vertex or not (Step 62) before pruning edge (vtop, vadj).
We iterate this new pruning process until all the leaves

become compulsory vertices (Step 42), and the resulting
subtree is the output of GPA (Step 71). This new pruning
process is more accurate than the previous one (Steps 3-26)
since tag(i) in Step 50 is a tighter lower-bound of the cost to
keep i in 2 than c(i, vadj) − w(i) in Step 9. Moreover, this
new pruning process also has a polynomial-time complexity
of O(|V ′|log|V ′|), which means that GPA has a polynomial-
time complexity of O(|V ′|log|V ′|).

B. THE PROPOSED LEAF REPLACING ALGORITHM (LRA)
In WSNs, a sensor usually covers multiple targets, and a
target is usually covered by multiple sensors. Consequently,
many groups overlap with each other in SCGs and TCGs.
Here, we propose the Leaf Replacing Algorithm (LRA; Algo-
rithm 2) to improve suboptimal solutions to NWFGSTP by
replacing expensive leaves.

Let 2(V ′,E ′, 0,L,w, c) be a tree in a connected undi-
rected graph G(V ,E, 0,L,w, c). For vertex i that is not in
2 but in G, if there is an edge (i, j) such that vertex j is in
2, then we say that i is adjacent to 2. We first mark every
vertex i that is adjacent to 2 and shares groups with the
leaves of2 as unchecked (Step 2). Then, for each unchecked
vertex i, we find edge (i, j) that corresponds to the value below
(Step 5).

1c = min{c(i, j)− w(i)−
∑
m

{c(m, n)− w(m)}} (1)

where vertex j is in 2 and j /∈ L, m is a leaf group vertex of
2; edge (m, n) is in 2; 2p = 2 \

∑
m{(m, n)} ∪ (i, j) is also

a feasible solution to NWFGSTP. Clearly, if 1c < 0, then
c(2p) < c(2). Thus, by replacing edges

∑
m(m, n) with (i, j)

(Step 7), 2 can be improved. Subsequently, we mark every
removed leaf as unchecked (Step 8) since they may be added
back to 2p. We iterate this process until all the vertices have
been checked.

The reason to only replace group vertices in LRA is
that cheap leaves may be replaced by expensive ones if we
allow m in Equation (1) to be non-group vertices. Neverthe-
less, non-group leaves should be removed from 2 anyway.
We leave this job to GPA, which can remove non-group
leaves more efficiently. Since the time complexity to check
every vertex i is O(|V |); to check every vertex j is O(|V ′|);
to check every vertex m is O(|V ′|), the time complexity of
LRA is O(|V ′|2|V |). Therefore, LRA is slow when |V ′| is
large. In our later proposed post-processing procedure for
NWFGSTP, we put GPA ahead of LRA to make LRA fast
by reducing |V ′|.
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Algorithm 2The Proposed Leaf Replacing Algorithm (LRA)
Input: graph G(V ,E, 0,L,w, c), tree 2(V ′,E ′, 0,L,w, c)
Output: an improved solution tree 2p(V ′′,E ′′)
1: 2p = 2

2: Mark every vertex i that is adjacent to 2p and shares
groups with the leaves of 2p as unchecked

3: while there are unchecked vertices do
4: for each unchecked vertex i do
5: Find edge (i, j) corresponding to 1c in Eq. (1)
6: if 1c < 0 then
7: 2p = 2p \

∑
m{(m, n)} ∪ (i, j)

8: Mark every replaced leaf m as unchecked
9: end if
10: end for
11: end while

C. THE PROPOSED BRANCH REPLACING
ALGORITHM (BRA)
Here, we propose the Branch Replacing Algorithm (BRA;
Algorithm 3) to improve suboptimal solutions to NWFGSTP
by replacing expensive branches, i.e., replacing unreliable
transmission routes with reliable ones (note that, relay nodes
may be in these routes). First, we randomly select a group
vertex as the root r (Step 2). Then, we mark all the vertices
as untagged (Step 3). We tag r with two values (Step 4):
tag1(r) = 0; tag2(r) = r . For untagged vertex j which is
adjacent to tagged vertex i, if j is not a group or junction
vertex, then we tag j with two values (Step 21): tag1(j) =
tag1(i)+1; tag2(j) = tag2(i). If j is a group or junction vertex,
then we distinguish two cases:

Case 1: tag1(i) < α, where α is a constant and α ≥ 0.
We tag j with two values (Step 18): tag1(j) = 0; tag2(j) = j.
Case 2: tag1(i) ≥ α. We consider the branch between ver-

tices j and tag2(i), i.e., branch(j, tag2(i)), as a long branch that
may be replaced. tag1(i) is the number of vertices between j
and tag2(i), and none of these vertices is group or junction
vertex. We define the cost of this branch as

cbranch(j,tag2(i)) =
∑

c(k, l)−
∑

w(q) (2)

where edge (k, l) is in this branch, vertex q is in the middle of
this branch. Removing branch(j, tag2(i)) from2 induces two
connected components: 2j and 2tag2(i), which respectively
contain j and tag2(i). If there is an edge (m, n) such that m ∈
2tag2(i), n ∈ 2j, and

c(m, n) = min{c(x, y)} < cbranch(j,tag2(i)) (3)

where x ∈ 2j, y ∈ 2tag2(i), x, y /∈ L, then 2p =

2 \ branch(j, tag2(i)) ∪ (m, n) is also a feasible solution
to NWFGSTP, and c(2p) < c(2). Thus, by replacing
branch(j, tag2(i)) with edge (m, n) (Step 10), 2 can be
improved. Moreover, when tag1(m) > 0 and m becomes a
junction vertex after replacing the branch, we need to update
the tagged values ofm and its offspring that have been tagged
(Step 12). Since the time complexity to tag vertices in 2 is

Algorithm 3 The Proposed Branch Replacing Algo-
rithm (BRA)
Input: graph G(V ,E, 0,L,w, c), tree 2(V ′,E ′, 0,L,w, c),
parameter α
Output: an improved solution tree 2p(V ′′,E ′′)
1: 2p = 2

2: Randomly select a group vertex in 2p as the root r
3: Mark all the vertices as untagged
4: Tag r : tag1(r) = 0; tag2(r) = r
5: while there are untagged vertices do
6: for untagged vertex j adjacent to tagged vertex i do
7: if j is a group or junction vertex then
8: if tag1(i) ≥ α then
9: if edge (m, n) satisfying Equation (3) then
10: 2p = 2p \ branch(j, tag2(i)) ∪ (m, n)
11: if tag1(m) > 0 & m is a new junction then
12: Update tagged values of m and its off-

spring
13: end if
14: else
15: Tag j: tag1(j) = 0; tag2(j) = j
16: end if
17: else
18: Tag j: tag1(j) = 0; tag2(j) = j
19: end if
20: else
21: Tag j: tag1(j) = tag1(i)+ 1; tag2(j) = tag2(i)
22: end if
23: end for
24: end while

O(|V ′|); to find edge (m, n) is O(|E|), the time complexity of
BRA is O(|V ′||E|).

D. THE PROPOSED MINIMUM FULL SPANNING TREE
ALGORITHM (MFSTA)
The Minimum Spanning Tree (MST) algorithm is widely
used to improve suboptimal solutions to some classical
Steiner tree problems in graphs, such as the prize-collecting
Steiner tree problem [25]. It does this by finding the MST
that spans all the vertices in that solution. However, we can-
not directly apply it to improve suboptimal solutions to
NWFGSTP due to the existence/constraint of leaf vertices.
To address this issue, we first propose a new spanning tree
problem as follows.
Definition 6 (The Minimum Full Spanning Tree Problem):

Let G(V ,E,L, c) be a connected undirected graph, where V
is the set of vertices, E is the set of edges, L is a subset of V
called leaf vertices, and c is a function which maps each edge
in E to a nonnegative value called edge cost. The purpose is
to find a spanning tree 2(V ,E ′),E ′ ⊆ E with the minimum
cost c(2) =

∑
e∈E ′ c(e), and every i ∈ L is a leaf of 2.

We can improve a suboptimal solution to NWFGSTP by
finding the Minimum Full Spanning Tree (MFST) that spans
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all the vertices in this solution, i.e., to find a more reliable
routing tree. Note that, there may be no full spanning tree in
some instances. However, in our application, we assume that
there is always a full spanning tree in TCGs. We prove that
theMFST can be found in polynomial time by attaching large
costs to edges that are adjacent to leaf vertices.
Theorem 6: Given two graphs G(V ,E,L,w, c) and

G′(V ,E,L,w, c′). If there are full spanning trees in them;
and for every edge (i, j) ∈ E, c′(i, j) = c(i, j) + τM, where
τ = |L ∩ {i, j}|, M ≥

∑
e∈E |c(e)|, then the MST in G

′ and
the MFST in G share the same topology.

Proof: Assume 21(V ,E1) is a full spanning tree in G′;
22(V ,E2) is an MST in G′, and there is a leaf vertex i ∈ L
such that its degree δ(i) = x ≥ 1 in 22; 23(V ,E3) is an
MFST in G′; 24(V ,E4) is an MFST in G. Since c(21) ≥
c(22), we have∑

e∈E1

c(e)+ |L|M ≥
∑
e∈E2

c(e)+ (|L| + x − 1)M (4)

Thus, x = 1; 22 is also a full spanning tree. Therefore,
c(22) = c(23). On the other hand, since c(23) = c(24) +
|L|M , every topology that induces 23 also induces 24.
Hence, every topology that induces22 also induces24, vice
versa, which means that the topology of the MST in G′ is the
same as that of the MFST in G. �
Based on this theorem, we propose the Minimum Full

Spanning Tree Algorithm (MFSTA; Algorithm 4) to improve
suboptimal solutions to NWFGSTP. Given a solution tree
2(V ′,E ′, 0,L,w, c) (or a graph G), we first construct
G′(V ′,E ′2, 0,L,w, c

′), where E ′2 is the set of edges in the
initial graph G that connect vertices in V ′, c′ is the set of
edge costs as those in Theorem 6. Then, we find the MST of
G′ as an improved solution tree. Since the time complexity
to find the MST on G′ is O(|E ′2| + |V

′
|log|V ′|) (Prim’s

algorithm [26]), MFSTA has a polynomial-time complexity
of O(|E ′2| + |V

′
|log|V ′|).

Algorithm 4 The Proposed Minimum Full Spanning Tree
Algorithm (MFSTA)
Input: graph G(V ,E, 0,L,w, c), tree 2(V ′,E ′, 0,L,w, c)
Output: an improved solution tree 2p(V ′′,E ′′)
1: Construct G′(V ′,E ′2, 0,L,w, c

′)
2: 2p = MST (G′)

E. THE PROPOSED POST-PROCESSING PROCEDURES
(POSTP1&2)
There are four post-processing algorithms proposed above:
GPA, LRA,BRA andMFSTA.Here, we combine them as two
post-processing procedures for NWFGSTP. First, we com-
bine all these four algorithms together as a procedure: PostP1
(Algorithm 5). Different sequences of these algorithms may
induce different post-processing effects and running times.
Thus, a trade-off between post-processing effect and speed
is required to sequence these algorithms. We investigate this

trade-off by comparing all the 24 (4!) sequences of these four
algorithms through computational trials. The results show
that the order between GPA and LRA has the most significant
impact on the speed: all the fastest 12 sequences have GPA
ahead of LRA. The reason is that GPA reduces the sizes of
suboptimal solutions in polynomial time, while the running
time of LRA decreases significantly as these sizes decrease.
The GMLB sequence, i.e., GPA→MFSTA→LRA→BRA,
achieves a good trade-off between post-processing effect and
speed. Hence, we use this sequence in PostP1. We iteratively
implement this sequence until the suboptimal solution to
NWFGSTP cannot be improved any more. The time com-
plexity of PostP1 is O(|V ′|2|V | + |V ′||E|). We will apply it
to post-process suboptimal solutions to NWFGSTP in small
instances. Furthermore, PostP1 can be modified to achieve
stronger post-processing effects in scenarios that are not sen-
sitive to speed. For example, in LRA and BRA, we only use
edges to replace leaves and branches. Since there are only
nonpositive node weights, we can instead find the lowest-cost
paths to replace leaves and branches. By doing this, stronger
post-processing effects may be achieved.

On the other hand, PostP1 is slow in large instances due to
the large time complexities of LRA and BRA. Thus, we com-
bine GPA and MFSTA as another procedure: PostP2 (Algo-
rithm 6). We use the GMG sequence, i.e., GPA→ MFSTA
→ GPA. Unlike PostP1, we implement this sequence once
without iteration. Clearly, the time complexity of PostP2 is
O(|E ′2| + |V

′
|log|V ′|). We will apply it to find cheaper node

placement solutions in large instances.

Algorithm 5 The First Proposed Post-Processing Procedure
(PostP1)
Input: graph G(V ,E, 0,L,w, c), tree 2(V ′,E ′, 0,L,w, c),
parameter α
Output: an improved solution tree 2p(V ′′,E ′′)
1: 2p = 2

2: while 2p can be improved do
3: 2p = GPA(2p)
4: 2p = MFSTA(2p,G)
5: 2p = LRA(2p,G)
6: 2p = BRA(2p,G, α)
7: end while

Algorithm 6 The Second Proposed Post-Processing Proce-
dure (PostP2)
Input: graph G(V ,E, 0,L,w, c), tree 2(V ′,E ′, 0,L,w, c)
Output: an improved solution tree 2p(V ′′,E ′′)
1: 2p = 2

2: 2p = GPA(2p)
3: 2p = MFSTA(2p,G)
4: 2p = GPA(2p)
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V. THE PROPOSED ALGORITHMS FOR NWFGSTP
In this section, we propose an exponential-time exact
algorithm and a polynomial-time heuristic algorithm to
respectively produce optimal solutions for small instances
and suboptimal solutions for large instances.

A. AN EXPONENTIAL-TIME EXACT ALGORITHM
Here, we propose an exact algorithm (ExactA; Algorithm 7)
for NWFGSTP. Let G(V ,E, 0,L,w, c) be the input graph.
We first apply MFSTA on G to produce a feasible solution
(Step 1). Then, we use Theorem 4 to identify compulsory
vertices (Step 2). For each of the other vertices, there are two
possible scenarios, namely that it is in the FGSMT or it is not
in the FGSMT. Therefore, the total number of possible sce-
narios is 2|V |−|C|, where |C| is the number of identified com-
pulsory vertices. We iteratively check every possible scenario
(Step 3). In each of them, a subgraph Gs(V ′,E ′, 0,L,w, c) is
induced, where V ′ is the set of included vertices, E ′ is the set
of edges in G that connect vertices in V ′. If Gs is connected;
and for each group g ∈ 0, g ∩ V ′ 6= ∅, then we say that
Gs is a feasible subgraph, which means that it may contain
feasible solutions to NWFGSTP. If Gs is a feasible subgraph,
then we apply MFSTA to produce a spanning tree 2m on it
(Step 5). Since there may be no full spanning tree in Gs, 2m
may not be a feasible solution to NWFGSTP. On the other
hand, if2m is a feasible solution, then we use it to update the
best feasible solution we obtained so far (Step 7). The best
feasible solution in all these possible scenarios is the FGSMT
on G. Clearly, ExactA has an exponential-time complexity
of O(2|V |−|C|). Unlike the conventional exact algorithms for
other Steiner tree problems in graphs, ExactA has a low
demand onmachines, and thus can be implemented on simple
devices. Nevertheless, it is slow for large instances. Faster
exact algorithms, such as the ones based on the branch-and-
cut [21] or branch-and-bound [27] idea, can be explored in
the future.

B. A POLYNOMIAL-TIME HEURISTIC ALGORITHM
Solving NWFGSTP to optimality may be impractical when
the number of candidate devices is large in WSNs. Hence, it

Algorithm 7 The Proposed Exact Algorithm (ExactA)
Input: graph G(V ,E, 0,L,w, c)
Output: an optimal solution 2opt (Vopt ,Eopt )
1: Initialize 2opt = MFSTA(G)
2: Identify compulsory vertices using Theorem 4
3: for each scenario do
4: if Gs is a feasible subgraph then
5: 2m = MFSTA(Gs)
6: if 2m is feasible and c(2m) < c(2opt ) then
7: 2opt = 2m
8: end if
9: end if
10: end for

is preferable to develop fast heuristic algorithms to address
this issue. Here, we propose such an algorithm: MGA
(MFSTA + GPA; Algorithm 8). Let G(V ,E, 0,L,w, c) be
the input graph. In MGA, we first construct a new graph
G1(V ,E, 0,L,w, c1) (Step 1). In G1, the cost of edge (i, j)
is c1(i, j) = c(i, j) − w(i) − w(j). Then, we apply MFSTA
on G1 (Step 2). Ultimately, we use GPA to prune the MFST
to produce a feasible solution to NWFGSTP (Step 3). The
MFST on G1 is a better spanning tree for solution generation
than the MFST on G, as it considers the existence of negative
node weights. There is no approximation guarantee forMGA.
However, we will later show that MGA finds high-quality
solutions in practice. MGA has a polynomial-time complex-
ity of O(|E|+ |V |log|V |). Our computational trials show that
it is fast and consumes little memory in practice.

Algorithm 8 The Proposed Heuristic Algorithm (MGA)
Input: graph G(V ,E, 0,L,w, c)
Output: a feasible solution 2(V ′,E ′)
1: Construct G1(V ,E, 0,L,w, c1)
2: 2 = MFSTA(G1)
3: 2 = GPA(2)

VI. EXPERIMENTAL EVALUATION
In this section, we evaluate our complete methodology
through experiments. These experiments are conducted on
a personal computer from 2016 (Intel Core i7-4790 CPU).1

Given that the existing node placement strategies and tech-
niques place heterogeneous nodes separately; and it is dif-
ficult to integrate and implement them due to their different
assumptions and objectives (e.g. [3]–[7]), we only implement
ExactA,MGAand PostP1&2 here.Wewill evaluate the speed
of ExactA, and both the speed and solution quality of MGA
and PostP1&2. Like the previous work (e.g. [3]–[7]), we ran-
domly generate benchmark instances with different graph
features to evaluate our algorithms. There are four graph
features: |V |, |E|, |0|, and |L|, in which |V | is the number of
vertices, i.e., the number of base stations, sensor nodes, and
relay nodes; |E| is the number of edges, i.e., the number of
transmission routes; |0| is number of groups, i.e., the number
of targets plus 1 (the sensor nodes covering each target are
in a group; the base stations are also in a group); and |L| is
the number of leaf vertices, i.e., the number of sensor nodes.
We use these benchmark instances to evaluate the perfor-
mances of our algorithms in different scenarios. Ultimately,
we apply a heterogeneous node placement example to show
their usefulness in practice.

A. APPLICATION TO BENCHMARK INSTANCES
First, we apply ExactA to solve some small instances to
optimality. The average running times of ExactA are shown
in Figure 3a. It can be seen that ExactA can solve small

1The codes and datasets are available at https://github.com/
YahuiSun/minimum-cost-heterogeneous-node-placement.
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FIGURE 3. Application to benchmark instances. (a) shows the average running times of ExactA for different instances; Size A: |V | = 20, |E | = 190,
|0| = 40; Size B: |V | = 20, |E | = 190, |0| = 20; Size C: |V | = 30, |E | = 435, |0| = 60; Size D: |V | = 30, |E | = 435, |0| = 30; for each g ∈ 0, 1 ≤ |g| ≤ 3.
(b) show the performance of PostP1 with different values of α for instances where |V | = 100, |E | = 450, |0| = 50; Solu. Improv. shows the improvements
of the MGA solutions. (c) shows the performance of MGA and PostP1&2 for the S/T instances (PostP1 in S1-10 and T1-10; PostP2 in S11-20 and T11-20).

FIGURE 4. The 95% Confidence Intervals of the approximation ratios of
MGA and its post-processed solutions. Blue, orange, gray and yellow bars
respectively correspond to Size A-D instances in Figure 3a. In (a), |L| = 0.
In (b), |L| = 5,5,10,10.

instances with dozens of vertices within seconds. The rea-
son why ExactA is faster when |0| is large is that more
compulsory vertices can be identified in this case (details in
Algorithm 7). Since ExactA has a low demand on compu-
tational resources and thus can be implemented on simple
devices, it may be preferable to apply ExactA to design
small WSNs in some cases. However, ExactA is slow for
large instances. Therefore, faster exact algorithms are still
recommended for future work.

Subsequently, we analyze the impact of α on PostP1. The
performance of PostP1 with different values of α is illustrated
in Figure 3b. PostP1 is faster when α = 0/1. The reason is
that, in this case, BRA has stronger post-processing effects
by replacing more branches. As a result, PostP1 needs fewer
iterations to finish the post-process. For the same reason,
the solution improvements of PostP1 are larger when α =
0/1. Based on these results, we set α = 1 in the following
experiments.

We then apply MGA and PostP1&2 to solve some large
instances. There are 40 instances generated: S1-20 and T1-
20, which respectively correspond to SCGs and TCGs. Their
sizes are listed as follows. S1-10: |V | = 1000, |E| = 10000,
|0| = 100, |L| = 0; S11-20: |V | = 100000, |E| = 1000000,
|0| = 100000, |L| = 0; T1-10: |V | = 1000, |E| = 10000,
|0| = 100, |L| = 100; T11-20: |V | = 100000, |E| =
1000000, |0| = 100000, |L| = 10000. The experimental
results are shown in Figure 3. Since MGA is polynomial,
it can find fast feasible solutions for these instances. On the
other hand, PostP1 is also fast for S/T1-10, and it generally
improves the MGA solutions by 20%. However, it is slow
for S/T11-20. Therefore, we use PostP2 for S/T11-20, and it
generally improves theMGA solutions by 10%. These results
show that MPA and PostP1&2 are useful for minimum-cost
heterogeneous node placement in large WSNs.
We further compare the heuristic solutions of MGA and

PostP1&2 with the optimal ones produced by ExactA for
small instances. The 95%Confidence Intervals of the approx-
imation ratios of these heuristic solutions, i.e., the ratios
between their costs and those of the optimal ones, are demon-
strated in Figure 4. It can be seen that, even though there
is no approximation guarantee for MGA, its approximation
ratios are generally small in practice, and our post-processing
algorithms can improve its solutions to near-optimal. More-
over, the approximation ratios of MGA are generally smaller
when L = ∅ and |0| is large. The reason is that L = ∅
induces more efficient edges in the MST by removing the
constraints of leaf vertices; and a large number of group con-
straints increases the sizes of suboptimal solutions and thus
makes the errors caused by certain suboptimal components
comparatively smaller. This indicates that MGA may have a
better performance in designing single-tiered WSNs with a
large number of targets.

B. CASE STUDY: MINIMUM-COST HETEROGENEOUS
NODE PLACEMENT
Ultimately, we solve the minimum-cost heterogeneous node
placement problem in an example of WSNs. This WSN is
modified from the one deployed across the first floor of the
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FIGURE 5. Application of our proposed node placement approach in an example of WSNs. The asterisks represent targets; the gray triangles represent
candidate base stations; the gray boxes represent candidate relay nodes; the colorful dots represent candidate sensor nodes; and the gray lines
represent transmission routes in the routing tree, i.e., the Steiner tree. In (a), each circle encircles a target and the candidate sensor nodes covering
this target, and all of them share the same color.

NIMBUS Center for Embedded Systems Research building
at Cork Institute of Technology in Ireland [28]. There are
5 targets, 2 candidate base stations, 18 candidate sensor nodes
and 10 candidate relay nodes (see Figure 5a). For the sake of
simplicity, we assume that the outage probabilities of trans-
mission routes are proportional to their distances. We asso-
ciate devices with random node weights to represent their
production and placement costs. We construct an SCG and
a TCG as those in Definitions 1 and 2. Then, we apply MGA
and PostP1 to solve NWFGSTP in them, and the designed
single-tiered and two-tiered WSNs are respectively shown
in Figures 5b and 5c. Clearly, a small number of devices
with short transmission routes between them are deployed
to meet the coverage and connectivity requirements, which
means that the sum of node production and placement costs
and transmission outage probabilities in the routing tree is
minimized through our approach. This indicates the useful-
ness of our approach for minimum-cost heterogeneous node
placement in practice.

VII. CONCLUSION
In this paper, we meet the challenge of minimum-cost
heterogeneous node placement by finding the locations of
base stations, sensor nodes, and relay nodes simultaneously
to minimize the sum of node production and placement
costs and transmission outage probabilities in the routing
tree, while meeting the coverage and connectivity require-
ments. First, we formulate both single-tiered and two-tiered
minimum-cost heterogeneous node placement problems as
NWFGSTP. Subsequently, we propose an exponential-time
exact algorithm, a polynomial-time heuristic algorithm and
several post-processing algorithms for NWFGSTP. Ulti-
mately, we evaluate their performances through experiments,
and demonstrate their usefulness for minimum-cost hetero-
geneous node placement in practice.
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