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Abstract—The popular Physarum-inspired Algorithms (PAs)
have the potential to solve challenging network optimization
problems. However, the existing researches on PAs are still
immature and far from being fully recognized. A major reason is
that these researches have not been well organized so far. In this
paper, we aim to address this issue. First, we introduce Physarum
and its intelligence from the biological perspective. Then, we sum-
marize and group four types of Physarum-inspired networking
models. After that, we analyze the network optimization problems
and applications that have been challenged by PAs based on
these models. Ultimately, we discuss the existing researches on
PAs and identify two fundamental questions: 1) What are the
characteristics of Physarum networks? 2) Why can Physarum
solve some network optimization problems? Answering these two
questions is essential to the future development of Physarum-
inspired network optimization.

Index Terms—Physarum polycephalum; nature-inspired algo-
rithm; data analytics.

I. INTRODUCTION

The emerging next-generation network optimization tech-
niques are expected to solve challenging problems in various
areas, such as transportation, communication, and biomedical
data analytics. After millions of years of evolution, the bio-
intelligence may provide clues to deign such techniques. In
fact, many types of bio-intelligence have been exploited to
solve various network optimization problems, and they have
considerably improved the strategies currently available in
our research community. However, some network optimiza-
tion problems still remain unsolved, and new techniques are
required to address this issue.

Physarum polycephalum is a slime mold that inhabits shady,
cool and moist areas (see Figure 1a; for the convenience, we
simply refer to Physarum polycephalum as Physarum in this
paper). In previous biological experiments, it has exhibited an
extraordinary intelligence to build efficient networks, such as
the shortest paths [1] and the Steiner trees [2]–[4]. Hence, an
increasing number of researches have recently been conducted
to explore this intelligence for network optimization.

A lot of Physarum-inspired Algorithms (PAs) have been
proposed to challenge network optimization problems, such
as the shortest path problem [5], [6], the traveling salesman
problem [7], and the Steiner tree problems [8], [9]. The ability
of PAs to solve some network optimization problems has
already been proven theoretically. For example, Bonifaci et
al. [10] proved that the PA proposed by Tero et al. [11]
can compute the shortest paths independently of the network
topology. Nevertheless, most of the existing PAs are still lack
of solid theoretical bases, even though they have shown a more

competitive performance than some traditional techniques.
Furthermore, the existing researches on PAs have not been well
organized to date. Therefore, the development of Physarum-
inspired network optimization is still immature and far from
being fully recognized, and some fundamental questions still
remain unanswered today. In this paper, we will address this
issue by reviewing and discussing the exiting researches on
Physarum-inspired network optimization.

The structure of this paper is as follows: in Section II,
we introduce Physarum and its intelligence; in Section III,
we summarize and group four types of Physarum-inspired
networking models; in Section IV, we summarize the net-
work optimization problems and applications that have been
challenged by PAs based on these models; in Section V, we
discuss the exiting researches on PAs and then provide some
recommendations for future work.

II. PHYSARUM AND ITS INTELLIGENCE

In this section, we first introduce Physarum from the
biological perspective. Then, we summarize its intelligent
behaviors. Ultimately, we reveal the physiological mechanism
in Physarum that possibly accounts for this intelligence.

A. Physarum polycephalum
Physarum polycephalum is a species of order Physarales,

subclass Myxogas-tromycetidae, class Myxomecetes, division
Myxostelida, commonly known as a true slime mold [12].
This organism has a sophisticated life cycle, which was first
described by Howard in 1931 [13]. At some stage of the cycle,
it becomes a syncytial mass of protoplasm, called plasmodium,
which is a single cell with many diploid nuclei that has a size
of up to tens of centimeters. The plasmodium of Physarum
polycephalum consists of two parts (see Figure 1a): a “sponge”
section including distributed actin-myosin fibers, and a “tube”
section made up of actin-myosin fibers. These two parts consist
of a mycelial network, which acts both as an information
highway transporting chemical and physical signals and as a
supply network circulating nutrients and metabolites through-
out the organism. The topology of this network changes
as Physarum explores the neighboring environment. Many
remarkable intelligent behaviors have been displayed during
this process, and it is believed that this intelligence can be
exploited to solve various network optimization problems.

B. Physarum intelligence
Physarum has shown many intelligent behaviors. We sum-

marize these behaviors as follows:
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(a) The tubular structure of Physarum polycephalum

(b) Physarum polycephalum finds the shortest path

(c) Physarum polycephalum forms a Steiner tree

Figure 1: Photographs of Physarum polycephalum (provided
by Professor Toshiyuki Nakagaki from Hokkaido University).
(a) shows the tubular structure of Physarum polycephalum.
(b) shows an experiment in which Physarum polycephalum
finds the shortest path between two agar blocks in a maze. (c)
shows an experiment in which Physarum polycephalum forms
a Steiner tree to connect three food sources (FS).

1) Finding the shortest path: this intelligent behavior was
first observed by Nakagaki et al. in 2000 [1]. In their experi-
ment, Physarum successfully found the shortest path between
two selected points in a maze (see Figure 1b). Notably,
people sometimes refer to this ability as the maze-solving
ability [14]. Moreover, it may be worthy mentioning that
Physarum can solve many other well-known problems that
can be transformed to the shortest path problem, such as the
minimum-risk problem [15] and the towers of Hanoi problem
[16].

2) Building high-quality networks: Physarum can build
high-quality networks to connect multiple food points. After
millions of years of Darwinian natural selection, it is believed
that Physarum networks have achieved a good balance between
cost, efficiency and resilience. For example, in a famous
experiment operated by Tero et al. in 2010 [17], Physarum
built networks with comparable qualities to those of Tokyo rail
system. Some other real-world transportation networks have
also been approximated by Physarum since then, such as the
Mexican and Iberian highways [18], [19]. More remarkably,
many other experiments have shown that the tubular topologies
of Physarum are sometimes similar to those of complex
mathematical networks (eg. the Steiner trees in Figure 1c)
[20]–[24]. This type of Physarum intelligence is highly valued,

especially when considering the difficulty of using traditional
techniques to design such networks.

3) Adapting to changing environments: Physarum is
chemotaxis, phototaxis and thermotaxis. Previous biological
experiments have shown that Physarum networks disassemble
and reassemble within a period of a few hours in response
to the change of external conditions [11], [25]. For instance,
when chemicals are applied to any part of the body of
Physarum, the whole organism migrates towards or away from
the stimulus [26]. More radically, Adamatzky [27] have shown
that Plasmodium-based computing devices can be precisely
controlled and shaped by illumination. This adapting ability
is highly appreciated in the design of dynamic networks, such
as the mobile ad hoc networks [28], [29].

4) Memorizing and learning: as a unicellular organism,
Physarum has shown an amazing ability to memorize and
learn. This intelligent behavior was first revealed by Saigusa
et al. in 2008 [30]. In their experiment, Physarum was ini-
tially exposed to unfavorable conditions presented as three
consecutive pulses at constant intervals. In response, Physarum
reduced its locomotive speed in each pulse. Then, the un-
favorable conditions were removed. However, Physarum still
reduced its locomotive speed at the time when the unfavorable
pulse would have occurred. Therefore, this experiment shows
that Physarum can memorize and learn. Moreover, Shirakawa
et al. [31] used an associate learning experiment to further test
this ability, and Reid et al. [32] pointed out that Physarum
can leave a thick mat of non-living, translucent, extracellular
slime as a form of spacial memory to avoid areas where it has
explored.

5) Biological computing: Physarum is considered to be
amongst the most prospective experimental prototypes of
biological computers. Many experiments have been done to
exploit its computing ability. For example, Tsuda et al. [33]
used Physarum to make a Boolean gate; they further used
Physarum to control robots in unknown dynamic environments
[34]; Adamatzky et al. [35] made a programmable Physarum
machine.

6) Distributed intelligence: in the body of Physarum, there
is no central information processing unit like a brain, but
rather a collection of similar parts of protoplasm. As a
consequence, a piece of Physarum cut from a larger one
can regenerate and become a perfect organism [36], and two
independent organisms can combine to form a single organism
after they contact with each other [22]. Thus, Physarum is a
good material for the researches on autonomous distributed
network optimization [26]. As the scales of the next-generation
networks are expected to be extremely large, centralized
control of communication becomes impractical. With the dis-
tributed intelligence, Physarum may inform the design of next-
generation, adaptive, robust spatial infrastructure networks
with decentralized control systems [37], [38].

C. The source of Physarum intelligence

It is necessary to understand where the Physarum intelli-
gence comes from before exploiting it. Since we focus on
Physarum-inspired network optimization in this paper, we
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Figure 2: Three steps to develop Physarum-inspired network-
ing models.

are interested in understanding what accounts for Physarum’s
ability to design high-quality networks. There is no exact
answer to this question so far. Nevertheless, the evidence to
date suggests that the protoplasmic flow through Physarum’s
tubular veins plays an important role in developing its net-
works. This protoplasmic flow is sometimes known as shuttle
streaming since the direction of the flow changes back and
forth periodically, based on a gradient of hydrostatic pressure
produced by active rhythmic contraction throughout the cell
[39], [40]. The protoplasmic flow brings important nutrients
absorbed from food sources into the tubular vein network. The
more concentration of nutrients in a tube, the more likely it can
absorb nutrients into its walls, and hence the more likely that it
grows to a wider tube. This growth leads to a further increase
of flux because the resistance to the flow is smaller in wider
tubes. On the other hand, shorter tubes needs fewer nutrients
to grow. Therefore, thick short tubes are the most effective
tubes for nutrition transportation in Physarum. The preference
of such tubes by the protoplasmic flow is believed to account
for Physarum’s intelligence to design high-quality networks.
We will later show that the simulation and reproduction of this
protoplasmic flow is the basis of many successful Physarum-
inspired networking models.

III. THE PHYSARUM-INSPIRED NETWORKING MODELS

In this section, we first introduce the methodology to de-
velop Physarum-inspired networking models. Then, we sum-
marize four types of Physarum-inspired networking models.
We will later discuss the network optimization problems and
applications that have been challenged by these models.

A. The methodology of developing Physarum-inspired net-
working models

Various bio-inspired techniques have been developed in the
last few decades, including the genetic algorithm [41], the
particle swarm optimization algorithm [42], and the currently
popular neural networks [43]. The methodology of developing
Physarum-inspired networking models is similar to that of
other bio-inspired techniques. Dressler and Akan [28] have
summarized three steps to develop bio-inspired networking

techniques, which are identification of analogies in nature,
modeling of realistic biological behaviors, and model cus-
tomization for applications. Based on their work, we sum-
marize three steps to develop Physarum-inspired networking
models in Figure 2. First, it is necessary to reveal the Physarum
intelligence of network optimization through biological exper-
iments. Second, we can model Physarum intelligence based on
the observation in these experiments. Ultimately, the proposed
models must be customized for different network optimization
applications.

B. The flow-conductivity model
The protoplasmic flow through Physarum’s tubular veins is

believed to account for Physarum’s intelligence. Many models
have been proposed to simulate this flow, in which the flow-
conductivity model is the most successful one. This model was
first proposed by Tero et al. in 2006 [5] to solve the shortest
path problem, and it is inspired by an underlying physiological
mechanism: Physarum’s tube thickens as the protoplasmic flow
through it increases [36].

The shortest path problem is to find the shortest path
between two terminals in a network. In this model, there is pro-
toplasmic flow in every edge. The two terminals represent two
agar blocks containing nutrient, which are food for Physarum.
One terminal is called the source node, and the other terminal
is called the sink node. The protoplasmic flow flows into the
network from the source node and out of the network from the
sink node. There is pressure at each vertex, and the quantity
of flux in each edge is proportional to the pressure difference
between the two ends of this edge. Specifically, the flux Qij

in edge (i, j) is given by the Hagen-Poiseuille equation below.

Qij =
Dij

cij
(pi − pj) (1)

Dij =
πr4ij
8ξ

(2)

where Dij is the edge conductivity, cij is the edge length,
pi and pj are pressures at vertices i and j, rij is the edge
radius, and ξ is the viscosity coefficient. Equation (2) shows
that Physarum’s tubular thickness (rij) increases with the
tube’s conductivity. Thus, the change of Physarum’s tubular
thickness can be described by the conductivity update equation
as follows.

d

dt
Dij = f(|Qij |)− µDij (3)

where f(|Qij |) is an increasing function, µ is a positive
constant. The conductivity update equation implies that con-
ductivities tend to increase in edges with big flux. Therefore,
the conductivity update equation reflects the physiological
mechanism above. To calculate the flux and update edge
conductivities, we need to first calculate the pressures. By
considering the conservation law of flux at each vertex, the
pressures can be calculated using the network Poisson equation
below.∑

i∈V (j)

Dij

cij
(pi − pj) =

 −I0, j = source
+I0, j = sink
0, otherwise

(4)
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where V (j) is the set of vertices linked to vertex j, and I0
is the quantity of flux flowing into the source node and out
of the sink node. Let the pressure at the sink node be 0, and
give each edge conductivity an initial value, then the other
pressures can be calculated using Equation (4). After that, the
quantity of flux in each edge can be calculated using Equation
(1), and the conductivity of each edge can be updated using
Equation (3). Given a threshold value of edge conductivity,
edges with conductivities smaller than this value are cut from
the network. In this way, the shortest path between the source
node and the sink node can be found by iteratively updating
edge conductivities and cutting edges.

Miyaji et al. [44] provided a rigorous proof that the equi-
librium point corresponding to the shortest path is globally
asymptotically stable for the model above on Riemannian
surface. Later, Bonifaci et al. [10] proved that this model
converts to the shortest path, independently of the network
topology. However, it must be noticed that both of their proofs
are based on the preconditions that f(|Qij |) = |Qij | and
µ = 1.

The initial flow-conductivity model above was designed to
find the shortest path between two terminals. Nevertheless,
there are many adapted models to deal with the multi-terminal
cases, such as the Steiner tree problems. The biggest challenge
of adapting the flow-conductivity model to the multi-terminal
cases is how to select terminals to be source and sink nodes.
There are four strategies to do so:

• One source node and one sink node: this strategy is to
select one terminal to be the source node and then select
another terminal to be the sink node. It was first proposed
by Nakagaki et al. in 2008 [45] to solve the classical
Steiner tree problem in planes. Some later researches
are also based on this strategy. For example, Tero et al.
[17] designed networks similar to the Tokyo rail system,
Houbraken et al. [46] designed fault tolerant networks,
and Qian et al. [47] solved the traveling salesman prob-
lem.

• Multiple source nodes and one sink node: this strategy
is to select one terminal to be the sink node and then
select the other terminals to be source nodes. It has been
applied by Liu et al. in 2015 [48] to solve the classical
Steiner tree problem in graphs. Recently, Sun et al. [8],
[9] have also used it to solve the prize-collecting Steiner
tree problem and the node-weighted Steiner tree problem.

• One source node and multiple sink nodes: this strategy
is to select one terminal to be the source node and then
select the other terminals to be sink nodes. It was first
used by Watanabe et al. in 2014 [49] to design transporta-
tion networks with fluctuating traffic distributions. Later,
Liu et al. [50] also used it to identify the focal nodes that
spread diseases in epidemiological networks.

• Multiple source nodes and multiple sink nodes: this
strategy is to select multiple terminals to be the source
nodes and multiple terminals to be the sink nodes. It was
recently proposed by Zhang et al. in 2016 [51] to solve
the supply chain network design problem.

On the other hand, some work has been done to modify

the flow-conductivity model. For instance, Zhang et al. ac-
celerated its optimization process by intentionally removing
the edges with a stable decreasing flow [52]; Tero et al. [11]
analyzed the influence of different forms of f(|Qij |) through
abundant computational experiments; Liu et al. [53] proposed
an equation to obtain new pressures by updating old pressures,
and thus avoided the computationally expensive process of
calculating pressures. Moreover, there are some other models
that are similar to the flow-conductivity model, such as the
current-reinforced random walk model [54].

C. The cellular model

The cellular model was proposed by Gunji et al. in 2008
[55] to design high-quality networks. In this model, the
optimization process is consistent with the properties of real
cells. There are two phases in this process: the development
phase and the foraging phase. In the development phase, an
aggregation of cell components is derived from an initial
seed. While in the foraging phase, the behavior of the cell
corresponds to that of the vegetative state of Physarum. Given
a planer lattice, and every lattice site has various states, a cell
is then described as an aggregation of lattice sites in particular
states: the inside (state 1) is surrounded by a boundary (state
2) in a lattice space consisting of the outside (state 0). It is
assumed that the boundary state corresponds to an assembly
of cytoskeleton fibers in the body of Physarum. In the foraging
phase, a cell eats 0, and this gives rise to both migration and
modification of the cell. Eating 0 or invasion of the outside into
a cell corresponds to the process of softening a particular part
of the membrane of Physarum. The protoplasmic flow toward
the softened area is implemented by the transportation of the
eaten 0, which is called the bubble. During this transportation,
the bubble is accompanied by cytoskeleton, which leads to a
re-organization of the distribution of the cytoskeleton.

Gunji et al. [55], [56] have applied this model to simulate
the amoebic motion and solve the classical Steiner tree prob-
lem in planes. However, Liu et al. [57] pointed out that the
initial cellular model is of low efficiency since there is only
one bubble in the cell. Therefore, they proposed an improved
cellular model with multiple bubbles, and their improved
model obtained higher efficiency and stability than the original
one. Moreover, Adamatzky proposed a different cellular model
in 2014 [58]. His model is different from the cellular model
above in that it imitates the active growing zones of Physarum
with excitation wavefronts and structure of protoplasmic tubes
with pointers in excitable cellular automata. He has success-
fully applied this model to approximate the longest roads in
USA and Germany on 3-D terrains.

D. The multi-agent model

Physarum has displayed the behaviors to design high-quality
networks in previous experiments. Therefore, it is desirable to
design a model to approximate the behaviors of Physarum.
The multi-agent model proposed by Jones in 2009 [59] is
such a model. This model is based on the behaviors of a
population of particle-like mobile agents to approximate some
of the complex phenomena observed in Physarum. Each agent
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senses and deposits stimulus as it moves towards the nearby
stimulus within a diffusive lattice, which is represented by
a discrete two-dimensional floating point array. Therefore, the
swarm population not only adapts to but also modifies its envi-
ronment. In this model, the structure of the Physarum network
is indicated by the collective pattern of the positions of agents,
and the protoplasmic flow is represented by the collective
movement of agents. Just like the biological experiments on
Physarum [12], Jones have applied the initial multi-agent
model to approximate different types of proximity graphs
[3], [59], [60] and construct complex transport networks [61].
Furthermore, Wu et al. [62] improved the initial multi-agent
model by reducing the number of sensors of each agent and
adding a memory module to each agent. Their improved
model is more flexible and adaptive, and it approximates the
behaviors of Physarum more closely.

E. The shuttle streaming model

The shuttle streaming model proposed by Siriwardana et al.
in 2012 [6] is based on the simulation of the protoplasmic
flow through Physarum’s tubular veins. This model simulates
the bidirectional protoplasmic flow to solve the shortest path
problem. In this model, the protoplasmic flow is divided into
two parts: the forward flow and the backward flow. These
two types of flow occur alternately from one terminal to
the other terminal. There is a uniform absorption rate for
each edge, and the quantity of flux each edge absorbs is in
proportion to this uniform absorption rate and the length of
this edge. Thus, longer edges absorbs more flow. Each node
has a memory of the quantity of flux it received through each
edge in the previous flow in the opposite direction, and the
node distributes the flux it received in the current flow to the
adjacent edges in proportion to the quantity of flux it received
in the last flow. Similar to the flow-conductivity model, edges
with small flow in them are cut from the network. By iterating
the bidirectional protoplasmic flow above, the shortest path
between two terminals can be found. Siriwardana et al. have
shown that the shuttle streaming model is much faster than the
flow-conductivity model to find the shortest path. Nevertheless,
there is no rigorous proof that it can always find the shortest
path. Moreover, no work has been done to apply it to more
complex network optimization problems. Hence, future work
is recommended to release the full potential of this model.

IV. THE CHALLENGED NETWORK OPTIMIZATION
PROBLEMS AND APPLICATIONS

The above Physarum-inspired networking models have been
applied to challenge various network optimization problems
and applications. We summarize them as follows.

A. The shortest path problem and applications

The shortest path problem is to find the shortest path be-
tween two terminals in a network. Many PAs have challenged
this problem, in which Physarum Solver [5] based on the
flow-conductivity model is probably the most famous one. For
example, Chen et al. [63] applied it to spectroscopy analysis;

Zhang et al. [64] improved its performance; Bonifaci et al.
[10] proved that it always converts to the shortest path inde-
pendently of the network topology. However, no traditional
algorithm for the shortest path problem has been compared
with Physarum Solver and its variants to date. Thus, future
work is required to show the advantages of Physarum Solver
over traditional algorithms. Besides Physarum Solver and its
variants, Physarum Optimization with Shuttle Streaming [6],
which is based on the shuttle streaming model, has also
challenged the shortest path problem. Siriwardana et al. [6]
claimed that this algorithm is much faster than Physarum
Solver. Nevertheless, there is no rigorous proof of its ability
to find the shortest path so far, and computational trials show
that it may not always convert to the shortest path [6]. Hence,
more theoretical work is needed to reveal its ability and then
improve its performance.

B. The classical geometric Steiner tree problem and applica-
tions

The classical geometric Steiner tree problem is to find the
shortest network to connect multiple terminals in a given
geometric space. It has been widely applied to design the
shortest transportation networks in numerous areas. Nakagaki
et al. [65] have proposed a PA based on the flow-conductivity
model to challenge this problem. They first constructed a dense
graph to represent the Euclidean plane. Then, they applied
their PA to that graph. The subnetworks obtained in this graph
are composed of meandering paths. By replacing these mean-
dering paths with straight lines, they obtain the final solution
networks. In this way, they successfully found approximations
to Steiner minimum trees with up to 16 terminals. Tero et al.
[2] further suggested that the parameter µ in Equation (3)
and the rules to select source and sink nodes are essential
to this algorithm. Besides the work above, Gunji et al. [55]
have proposed a PA based on the cellular model to challenge
this problem. In their algorithm, they use cells to cover the
Euclidean plane, and the cell moves to find approximations
to Steiner minimum trees. However, their algorithm can only
find approximations to Steiner minimum trees with up to 4
terminals. It is easy to see that all of the algorithms above
can only solve the classical geometric Steiner tree problem
with limited number of terminals. Moreover, they all have a
low solution precision. For example, the solution precision of
Nakagaki’s algorithm is limited by the density of the grid,
while that of Gunji’s algorithm is limited by the density of
cells. Thus, it is reasonable to say the current work of using
PAs to challenge the classical geometric Steiner tree problem
is still immature.

C. The classical Steiner tree problem in graphs and applica-
tions

The classical Steiner tree problem in graphs is to find
the shortest subnetwork to connect multiple terminals in a
network. Song et al. [66] first proposed a PA based on the flow-
conductivity model to solve the minimal exposure problem
in wireless sensor networks, which can be transformed into
the classical Steiner tree problem in graphs. Later, Liu et al.
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Figure 3: Application of Physarum-inspired algorithms to
pharmacological networks for drug repositioning [9].

[48] improved this algorithm, and their algorithm showed a
performance similar to two traditional algorithms, the 1.55
worst-case ratio algorithm and the tabu search algorithm.

D. The prize-collecting Steiner tree problem and applications

The prize-collecting Steiner tree problem is a more general
version of the classical Steiner tree problem in graphs. In the
prize-collecting Steiner tree problem, we not only have edge
costs, but also have none-negative node weights. The purpose
of this problem is to find a subnetwork with the maximum
net-weight (the total node weights minus the total edge costs).
Recently, Sun et al. [9] proposed a PA based on the flow-
conductivity model to challenge this problem. They applied
both their algorithm and the traditional GW algorithm to
solve this problem for drug repositioning (see Figure 3). Their
algorithm successfully found more valuable drug repositioning
candidates than the traditional GW algorithm.

E. The node-weighted Steiner tree problem and applications

The node-weighted Steiner tree problem is a more general
version of the prize-collecting Steiner tree problem, and it has
been applied to various areas, such as communication network
design [8] and biomedical data analytics [67]. The difference
between these two algorithms is that in the node-weighted
Steiner tree problem, the node weight can be positive, negative,
or zero. Recently, Sun et al. [8] proposed a PA based on
the flow-conductivity model to challenge this problem. They
compared their algorithm with two traditional algorithms,
the genetic algorithm and the particle swarm optimization
algorithm. In the computational trials, their algorithm found
better solutions in a shorter time than these two algorithms.

F. The traveling salesman problem and applications

The traveling salesman problem is to find the shortest
circle connecting multiple vertices in a network. It has several
applications, such as planning, logistics, and the manufacture
of microchips. The evolutionary algorithms, such as the ant
colony optimization algorithm, the genetic algorithm, and the
particle swarm optimization algorithm, are widely used to

solve this problem. These algorithms perform well in small
instances. However, they may not be efficient and robust
enough to solve the real-world large instances. Zhang et al.
[7] proposed a PA based on the flow-conductivity model to
update the pheromone matrix in the ant colony optimization
algorithm. The final combined algorithm can avoid the con-
dition of premature convergence which often occurs in the
pure ant colony optimization algorithm. Lu et al. [68] further
applied this algorithm to the real-world instances with 34
vertices, and it achieved a better performance than the ant
colony optimization algorithm, the genetic algorithm, and the
particle swarm optimization algorithm. Besides the original
traveling salesman problem, some variant problems have also
been challenged by PAs. For example, Masi et al. [69] and
Zhang et al. [70] have proposed PAs to solve the multi-
objective traveling salesman problem, while Pezhhan et al.
[71] have solved the fuzzy traveling salesman problem.

G. The multicast routing problem and applications

The multicast routing problem is to find the lowest-cost
subnetwork to deliver data to multiple destinations in a com-
munication network. It is similar to the classical Steiner tree
problem in graphs, except that some constraints are required to
be met, such as the delay and bandwidth constraints. Liang et
al. [72] proposed a PA based on the flow-conductivity model
to update the crossover operator of the genetic algorithm. The
final combined algorithm has challenged the multicast routing
problem in mobile ad hoc networks. The computational trials
show that it has a much better performance than the genetic
algorithm.

H. Network evaluation and applications

Network evaluation is to evaluate the elements in the net-
work. The degree and betweenness centralities are two popular
network evaluation measures to evaluate the importance of
vertices in the network. However, the degree centrality neglects
the structural significance of a vertex while the betweenness
centrality requires the global information of the network.
Thus, both measures have defects in some applications. Liu
et al. [50] proposed a PA based on the flow-conductivity
model to evaluate the importance of vertices in the network.
Their algorithm considers the degree of a focal node and
the way neighbors are connected among themselves. Thus,
their algorithm overcomes the shortcomings of degree and
betweenness centralities. They have applied their algorithm
to various empirical networks and showed its advantages over
the popular measures.

I. The supply chain network design problem

A supply chain network is a network of manufacturers,
distribution centers, and customers. The supply chain network
design problem is to design supply chain networks to mini-
mize the cost of transporting products from manufacturers to
customers. Recently, Zhang et al. [51] proposed a PA based
on the flow-conductivity model to challenge this problem.
Their algorithm converges to new equilibrium states quickly
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when the network conditions are changed. Therefore, since
the real-world supply chain networks are highly dynamic,
their algorithm may have a better performance than traditional
techniques.

J. The transportation network design problem

Transportation is a ubiquitous issue for human society as
well as for biological systems. Therefore, the architecture, effi-
ciency and other characteristics of the transportation networks
have been attracting increasing scientific interest. Normally,
transportation networks are required to have low cost, high
efficiency, fault-tolerance, etc. Thus, transportation network
design is a multi-objective optimization problem, which is
hard to solve and has attracted intensive notices in recent
years. Watanabe et al. [73] first used PAs to design railroad
networks with balanced performances. Later, they designed
transportation networks with fluctuating traffic distributions
[49]. Besides their work, Houbraken [46] proposed a PA
to design fault-tolerant transportation networks. Both their
algorithms are based on the flow-conductivity model. There
are some other types of PAs that have also been used to design
transportation networks. For example, Jones and Becker et al.
[61], [74] proposed PAs based on the multi-agent model to do
this. Moreover, besides the attempts to design transportation
networks, Zhang et al. [75] have also proposed a PA to identify
critical parts in transportation networks.

V. DISCUSSION

PAs have the potential to solve various network optimization
problems. There are three steps to develop them, which
are conducting experiments to reveal Physarum intelligence,
modeling Physarum intelligence, and customizing the model
for applications. Many experiments have been done to reveal
Physarum’s intelligence for network optimization. These ex-
periments show that the protoplasmic flow in the body of
Physarum plays a great role in developing this intelligence.
Thus, simulating the protoplasmic flow is essential in mod-
eling Physarum intelligence. There are mainly four types of
Physarum-inspired networking models, which are the flow-
conductivity model, the cellular model, the multi-agent model,
and the shuttle streaming model. Various PAs based on these
models have been proposed to challenge network optimization
problems.

However, hardly any theoretical work has been done to
support these challenges so far. For example, PAs based on the
flow-conductivity model have challenged multiple versions of
the Steiner tree problems, but rare work has been done to pro-
vide these PAs theoretical bases. As a consequence, it is hard
to improve their performance. Hence, we suggest two types
of future work, one is to provide PAs more theoretical bases,
and the other one is to improve their performances. We have
identified two fundamental questions: 1) What are the charac-
teristics of Physarum networks? 2) Why can Physarum solve
some network optimization problems? Answering these two
questions is essential to the future development of Physarum-
inspired network optimization.

Moreover, most existing PAs are still computationally too
expensive for many network optimization problems. Therefore,
minimizing their time complexities is another work worthy
doing in the future. On the other hand, we observe that we
can improve the performances of PAs not only by focusing on
the Physarum-inspired techniques, but also by incorporating
other bio-inspired techniques. For example, Sun et al. [8]
incorporated the evolutionary computation technique to solve
the node-weighted Steiner tree problem; Zhang et al. [7]
incorporated the ant colony optimization algorithm to solve
the traveling salesman problem; Liang et al. [72] incorpo-
rated the genetic algorithm to solve the multicast routing
problem. All these hybrid PAs achieved a better performance
than the original PAs. Thus, developing hybrid PAs is also
recommended. With more solid theoretical bases and more
available techniques, we believe that PAs can solve network
optimization problems that are beyond the reach of traditional
techniques in the future.

VI. CONCLUSION

The existing researches on Physarum-inspired network op-
timization are still immature and far from being fully recog-
nized. A major reason is that these researches have not been
well organized so far. In this paper, we address this issue
by summarizing and analyzing the existing Physarum-inspired
networking models and the challenged network optimization
problems and applications. We identify two fundamental ques-
tions: 1) What are the characteristics of Physarum networks?
2) Why can Physarum solve some network optimization prob-
lems? Answering these two questions is essential to the future
development of Physarum-inspired network optimization.
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