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Abstract— It is challenging to design large and low-cost com-
munication networks. In this paper, we formulate this challenge
as the prize-collecting Steiner Tree Problem (PCSTP). The
objective is to minimize the costs of transmission routes and
the disconnected monetary or informational profits. Initially,
we note that the PCSTP is MAX SNP-hard. Then, we propose
some post-processing techniques to improve suboptimal solutions
to PCSTP. Based on these techniques, we propose two fast
heuristic algorithms: the first one is a quasilinear time heuristic
algorithm that is faster and consumes less memory than other
algorithms; and the second one is an improvement of a state-
of-the-art polynomial time heuristic algorithm that can find
high-quality solutions at a speed that is only inferior to the
first one. We demonstrate the competitiveness of our heuristic
algorithms by comparing them with the state-of-the-art ones on
the largest existing benchmark instances (169 800 vertices and
338 551 edges). Moreover, we generate new instances that are
even larger (1 000 000 vertices and 10 000 000 edges) to further
demonstrate their advantages in large networks. The state-of-
the-art algorithms are too slow to find high-quality solutions for
instances of this size, whereas our new heuristic algorithms can
do this in around 6 to 45s on a personal computer. Ultimately,
we apply our post-processing techniques to update the best-
known solution for a notoriously difficult benchmark instance
to show that they can improve near-optimal solutions to PCSTP.
In conclusion, we demonstrate the usefulness of our heuristic
algorithms and post-processing techniques for designing large
and low-cost communication networks.

Index Terms— Network optimization, communication network
topology, prize-collecting Steiner tree.

I. INTRODUCTION

THE emerging next-generation communication networks,
including the 5G wireless networks [1], the cognitive

radio networks [2] and the Internet of Things [3], are envi-
sioned to have a great impact on our future society, economy,
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and quality of life. These networks are expected to have an
unprecedented large scale, and may be too expensive without
carefully designing the network topology to make a good
trade-off between minimizing the costs of transmission routes
and maximizing the connected monetary or informational
profits. Thus, making such a trade-off to design large and low-
cost communication networks is a challenge that needs to be
addressed.

Mathematically, the challenge of designing low-cost com-
munication networks can be formulated as Steiner tree prob-
lems (e.g. designing the routing [4]–[6] or physical [7]–[9]
topologies of low-cost communication networks). In this paper,
we formulate the challenge of designing low-cost communi-
cation networks as the Prize-Collecting Steiner Tree Prob-
lem (PCSTP), where we are given a connected undirected
graph with vertices and edges; each vertex is associated with
a nonnegative node weight (or prize); each edge is associated
with a positive cost; and the objective is to find a connected
subgraph to minimize the included edge costs plus the missed
node weights. By using vertices to represent communication
spots (e.g. houses or sensors); using edges to represent trans-
mission routes between spots (wired or wireless); using node
weights to represent prizes that can be earned from spots
(e.g. monetary profits or sensing information); and using edge
costs to represent costs of transmission routes (e.g. wired
cable costs or wireless energy consumption costs), we can
design low-cost communication networks by solving PCSTP
and therefore making a good trade-off between minimizing
the costs of transmission routes and maximizing the connected
monetary or informational profits. For example, in Figure 1,
we can minimize the costs of transmission routes and the
missed monetary or informational profits in communication
networks.

In fact, the techniques for PCSTP have already been
applied fruitfully by AT&T to the optimization of real-world
telecommunication networks [10]. Nevertheless, the existing
techniques may not have a good performance in designing
the emerging larger communication networks. For example,
the largest benchmark instance they have ever challenged has
only 169,800 vertices and 338,551 edges [11], which may
not be large enough to represent the emerging next-generation
communication networks, such as those with millions of nodes
enabled by the 5G wireless and Internet of Things technology
[3], [12]. Hence, there is value in developing new techniques
that still perform well in larger networks.

PCSTP is a more general version of the classical Steiner tree
problem in graphs. Since the classical Steiner tree problem
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Fig. 1. Two communication network design instances. The red nodes
represent communication spots; the red numbers represent prizes that can be
earned from these spots; the blue dash lines represent candidate transmission
routes; the blue numbers represent costs of these routes; and the blue
solid lines represent transmission routes in the minimum-cost communication
networks (Steiner Minimum Trees).

in graphs is NP-hard [13], PCSTP is also NP-hard, which
means that there is no algorithm to solve it to optimality in
polynomial time unless P = NP. Like the other NP-hard prob-
lems, different solution techniques have been developed for
PCSTP in small and large instances. Pre-processing techniques
and exact algorithms are often combined together to produce
optimal solutions in small instances (e.g. the combination in
[14]), where pre-processing techniques reduce instance sizes
and exact algorithms produce optimal solutions in the reduced
instances (note that, the state-of-the-art pre-processing tech-
niques, such as those in [15], are only fast enough to reduce
small instances with thousands of vertices, while we deal with
much larger instances with millions of vertices in this paper).
On the other hand, heuristic algorithms and post-processing
techniques are often combined together to produce fast subop-
timal solutions in large instances (e.g. the combination in [16]),
where heuristic algorithms produce fast suboptimal solutions
and post-processing techniques improve these solutions. Since
the next-generation communication networks are envisioned
to have a large scale, we focus on heuristic algorithms and
post-processing techniques in this paper.

Many heuristic algorithms have been proposed in the last
few decades. Nevertheless, the existing heuristic algorithms
may still not be fast enough, and their solutions may not have
a sufficiently low cost either. Moreover, post-processing tech-
niques have so far been rarely explored for PCSTP. The Mini-
mum Spanning Tree (MST) technique [17], which was initially
proposed for the classical Steiner tree problem in graphs, is the
only post-processing technique that can be used for PCSTP
to date. The computational trials show that it is ineffective in
many cases [16]. Thus, more powerful heuristic algorithms and
post-processing techniques are both required to design large
and low-cost communication networks. To address this issue,
we make the following contributions:

• we propose a pruning algorithm, a growing algorithm,
and then combine them with the existing MST technique
together as a post-processing procedure for PCSTP.

• based on the proposed pruning algorithm, we pro-
pose the only quasilinear time heuristic algorithm for

PCSTP to date. Then, we improve a state-of-the-art
polynomial time heuristic algorithm for PCSTP.

• we indicate the competitiveness of our heuristic algo-
rithms over the state-of-the-art ones for both the largest
existing benchmark instances and some newly generated
instances that are even larger. Furthermore, we apply
our post-processing techniques to update the best-known
solution for a notoriously difficult benchmark instance
to show that they can improve near-optimal solutions to
PCSTP.

II. THE CURRENT STEINER TREE ALGORITHMS

The earliest version of PCSTP was proposed by Segev [18]
in 1987. The term “Prize-Collecting Steiner Tree” was first
used by Bienstock et al. [19] in 1993. Similar to the other
NP-hard problems, the algorithms for PCSTP can be divided
into two groups: exact and heuristic. Exact algorithms can find
optimal solutions, but their running time does not scale well
for large instances. On the other hand, heuristic algorithms
cannot guarantee optimality, but they can find fast feasible
solutions in large instances.

The state-of-the-art exact algorithms solve PCSTP using
various Mixed Integer Programming (MIP) models. For exam-
ple, Ljubić et al. [14] formulated a branch-and-cut model
in 2006, and they successfully solved PCSTP to optimality
in some instances with thousands of vertices. Furthermore,
Fischetti et al. [20] proposed a node-based model. They
combined the branch-and-cut model above and the node-based
model together as a Steiner tree solver: Staynerd [21], which
won most of the categories for PCSTP in the latest DIMACS
Implementation Challenge on Steiner tree problems [22].
Recently, Leitner et al. [23] proposed a dual-ascent-based
branch-and-bound algorithm, which performs even better than
Staynerd in widely-used benchmark instances. These exact
algorithms can generally find optimal or near-optimal solutions
to PCSTP. However, they have high demands on machines
and are slow in large instances (as are MIP-based heuristic
algorithms). In particular, they consume a lot of memory
and may not be able to solve large instances when there are
limits on computation resources. Moreover, sophisticated MIP
solvers are needed to implement these algorithms. As a result,
it is not easy to embed these algorithms into mobile platforms,
which may be necessary in 5G cellular networks or wireless
sensor networks. Therefore, the use of simple fast heuristic
algorithms is required in some cases.

The first heuristic algorithm for PCSTP was proposed by
Bienstock et al. [19] in 1993, and their algorithm achieved
an approximation guarantee of 3. In 1995, Goemans and
Williamson [24] proposed a primal-dual algorithm using Bien-
stock’s LP relaxation model, and their algorithm achieved an
approximation guarantee of 2 − 1/(|V | − 1). This algorithm
deals with instances where there is exactly one compulsory ter-
minal, which is called the root. In the instances with multiple
compulsory terminals, this algorithm can be implemented by
selecting one compulsory terminal to be the root and giving
the other ones large node weights; in the instances with no
compulsory terminal, this algorithm can be implemented by
trying all the possible roots. Consequently, the time complexity
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of this algorithm is O(|V |2log|V |) in the instances with
compulsory terminals, and O(|V |3log|V |) in the instances
with no compulsory terminal [16]. In this paper, we refer to
this algorithm as the rooted GW algorithm.

There are two phases in the rooted GW algorithm, which
are called GW-growth and GW-pruning. A raw solution tree
is obtained in the GW-growth phase, while the GW-pruning
phase improves the raw solution tree by deleting expensive
edges and vertices. Johnson et al. [16] improved the rooted
GW algorithm in 2000 by proposing the Strong Pruning
algorithm to replace the original GW-pruning algorithm. The
Strong Pruning algorithm is more effective in practice, and
its known theoretical guarantees are the same [10]. There-
fore, the Strong Pruning algorithm is recommended to be
used to replace the original GW-pruning algorithm by many
researchers [11], [16]. Moreover, they further proposed an
unrooted version of the GW algorithm, which has a time
complexity of O(|V |2log|V |) in the instances with an arbi-
trary number of compulsory terminals, and its approximation
guarantee is 2 [25]. The unrooted GW algorithm is much faster
than the rooted one in instances with no compulsory terminal,
and thus is widely used to design large networks.

Besides the early work above, Archer et al. [10] proposed
an improved approximation algorithm in 2011 by combining
the rooted GW algorithm with an MIP-based approximation
algorithm for the classical Steiner tree problem in graphs [26].
The approximation guarantee of their algorithm is less than
1.9672. To our knowledge, this is the tightest approximation
guarantee obtained for PCSTP so far, which is useful from a
theoretical perspective. Nevertheless, it may not be fast enough
in large instances, especially when considering the fact that
implementing this algorithm in a rooted graph still needs
to run the rooted GW algorithm twice and the MIP-based
approximation algorithm once.

In this paper, we focus on designing large and low-cost
communication networks. Hence, we are interested in the fast
implementation of GW algorithms. The most important work
to accelerate GW algorithms was that of Cole et al. [27]
in 2001. They introduced the idea of dynamic edge split-
ting, which induces a time complexity of O(|E|log2|V |) for
unrooted instances. Based on this idea, Hegde et al. [11]
further accelerated the unrooted GW algorithm in 2014 by
employing priority queues, and their algorithm achieves a time
complexity of O(|E|log|V |). We refer to this algorithm as
the FGW (Fast Goemans-Williamson) algorithm, which can be
considered as a state-of-the-art heuristic algorithm for PCSTP.
Nonetheless, we will later show that we can improve it.

III. THE PRIZE-COLLECTING STEINER TREE PROBLEM

In this section, we first formally define PCSTP to formu-
late the large and low-cost communication network design
problem. Then, we indicate the difficulty to develop heuristic
algorithms for PCSTP by showing that it is MAX SNP-hard.

Definition 1 (The Prize-Collecting Steiner Tree Problem):
Let G(V, E, C, w, c) be a connected undirected graph, where
V is the set of vertices, E is the set of edges, C is a
(possibly empty) subset of V called compulsory terminals, w

is a function which maps each vertex in V to a nonnegative
value called the node weight (or prize), and c is a function
which maps each edge in E to a positive value called the
edge cost. The purpose is to find a connected subgraph
G′(V ′, E′), C ⊆ V ′ ⊆ V, E′ ⊆ E with the minimum net-
cost c(G′) =

∑
v∈V \V ′ w(v) +

∑
e∈E′ c(e).

Clearly, if we let V be the set of communication spots; let E
be the set of candidate transmission routes; let C be the set of
special spots that must be connected (e.g. the base stations in
telecommunication or wireless sensor networks); let w be the
set of prizes that can be earned from spots; let c be the set of
costs of transmission routes, then we can design minimum-cost
communication networks by solving PCSTP on G, and G′,
which is the designed communication network, will have the
minimum cost c(G′) =

∑
v∈V \V ′ w(v)+

∑
e∈E′ c(e), i.e., the

sum of missed prizes and included costs is minimal.
Bern and Plassmann [28] proved that the classical Steiner

tree problem in graphs with edge lengths 1 and 2 is MAX
SNP-hard. Since PCSTP is a more general case of this
problem, PCSTP is also MAX SNP-hard.

Theorem 1: PCSTP is MAX SNP-hard.
Arora et al. [29] showed that if any MAX SNP-hard

problem has a polynomial time approximation scheme, then
P = NP. Thus, there is no polynomial time approximation
scheme for PCSTP unless P = NP (notably, the P versus NP
problem is a major unsolved problem in computer science,
and it has not yet been proven that P �= NP). Consequently,
it is hard to develop fast heuristic algorithms that can produce
near-optimal solutions in large instances. In this paper, we will
propose two heuristic algorithms to meet this challenge: a
quasilinear time one without approximation guarantee (the
later proposed MSTG algorithm) and a polynomial time one
with a constant approximation guarantee (the later proposed
FGW′ algorithm). We will show that they are fast and can
produce near-optimal solutions in large instances.

IV. THE PROPOSED POST-PROCESSING TECHNIQUES

It may only be possible to produce suboptimal solutions
to PCSTP in large instances. Here, we propose some post-
processing techniques to improve suboptimal solutions to
PCSTP. Our later proposed heuristic algorithms are based on
these techniques.

A. The Proposed General Pruning Algorithm

Steiner tree problems in graphs are generally NP-hard. How-
ever, some special cases of them are polynomially solvable,
such as the Shortest Path Problem [30] and the Minimum
Spanning Tree Problem [31]. Here, we propose the Node-
Weighted Steiner Tree Problem in Trees (NWSTPT) for the
first time. NWSTPT is polynomially solvable, and solving it
is equivalent to improving suboptimal solutions to PCSTP by
pruning expensive vertices and edges. We propose the General
Pruning Algorithm (GPrA; Algorithm 1) to solve NWSTPT to
optimality in polynomial time.

There are two equivalent definitions of a tree: 1) a tree is
a connected network with no cycle; 2) a tree is a connected
network such that the removal of any edge in this network
will make it disconnected. NWSTPT is defined as follows:
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Algorithm 1 The Proposed General Pruning
Algorithm (GPrA)

Input: Tree T (V, E, C, w, c)
Output: Subtree Tp ⊆ T
1: Tp = T
2: if C is empty then
3: Initialize nw values
4: Mark all the vertices as unprocessed
5: while there is more than one unprocessed vertex do
6: for unprocessed vertex i such that ξ(i) = 1 do
7: Find the unprocessed adjacent vertex j
8: if c(i, j) < nw(i) then
9: Update nw(j) using Equation (1)

10: end if
11: Mark vertex i as processed
12: end for
13: end while
14: Add the vertex with the largest nw value to C
15: end if
16: Initialize nw values
17: Mark all the vertices as unprocessed
18: Randomly select a compulsory terminal as the root r
19: while there is more than one unprocessed vertex do
20: for unprocessed non-root vertex i that ξ(i) = 1 do
21: Find the unprocessed adjacent vertex j
22: if nw(i) < c(i, j) then
23: Remove (i, j) and the subtree rooted at i
24: else
25: Update nw(j) using Equation (1)
26: end if
27: Mark vertex i as processed
28: end for
29: end while

Definition 2 (The Node-Weighted Steiner Tree Problem in
Trees): Let T (V, E, C, w, c) be a tree, where V is the set
of vertices, E is the set of edges, C is a (possibly empty)
subset of V called compulsory terminals, w is a function which
maps each vertex in V to a real value called the node weight,
and c is a function which maps each edge in E to a positive
value called the edge cost. The purpose is to find a subtree
Tp(Vp, Ep), C ⊆ Vp ⊆ V, Ep ⊆ E with the maximum net-
weight w(Tp) =

∑
v∈Vp

w(v) − ∑
e∈Ep

c(e) or the minimum
net-cost c(Tp) =

∑
v∈V \Vp

w(v) +
∑

e∈Ep
c(e).

When all the node weights are non-negative, NWSTPT can
be considered as a special case of PCSTP where the input
graph G is a tree. If we consider T as a suboptimal solution
to PCSTP, then finding Tp is to improve this solution by
pruning expensive vertices and edges. The Strong Pruning
algorithm proposed by Johnson et al. [16] in 2000 can solve
NWSTPT to optimality in trees with a single compulsory
terminal. We first modify this algorithm to solve NWSTPT
with multiple compulsory terminals, and this modified version
is incorporated into GPrA as Steps 16-29.

Suppose C is nonempty, then Steps 2-15 will be skipped.
We associate each vertex with an nw value (Step 16).
The initial nw values of non-compulsory vertices are their

node weights, while that of compulsory terminals are B =∑
(j,k)∈E |c(j, k)| +

∑
j∈V |w(j)|, which ensures that all the

compulsory terminals are included in the pruning solution.
The nw values will be updated in the pruning process. Note
that, these nw values are different from the similar values
in Johnson’s Strong Pruning algorithm. With these new nw
values, we can solve NWSTPT to optimality in trees with
multiple compulsory terminals.

We further define the processing degree of vertex i, ξ(i),
as the number of its adjacent vertices that are unprocessed.
Initially, all the vertices are unprocessed (Step 17), and
only leaves have a processing degree of 1. We randomly
select a compulsory terminal to be the root r (Step 18). For
unprocessed non-root vertex i such that ξ(i) = 1, we find its
unprocessed adjacent vertex j (Step 21). If nw(i) < c(i, j),
then we remove edge (i, j) and the subtree rooted at i
(Step 23), otherwise we update the nw value of j using the
following equation (Step 25).

nw(j) = nw(j) + nw(i) − c(i, j) (1)

We keep processing all the non-root vertices until all of them
have been processed (Step 19). This process is an improvement
of Johnson’s Strong Pruning algorithm since it can deal with
instances with multiple compulsory terminals. However, it is
not enough to solve NWSTPT or post-process PCSTP since
there may be no compulsory terminal at the first stage (e.g.
the instances in [14]).

Then, suppose C is empty. We go through Steps 2-15 to add
a non-compulsory vertex to C: we first initialize the nw values
(Step 3) in the same way above, and keep processing all the
vertices that have a processing degree of 1 (Steps 6-12); this
process ends when there is only one vertex left unprocessed
(Step 5); the vertex associated with the largest nw value is
added to C (Step 14). Then, we go through Steps 16-29 to
prune the tree. The theorem below is proposed to prove that
GPrA can solve NWSTPT to optimality in trees with an
arbitrary number of compulsory terminals.

Theorem 2: Let T be a tree with an arbitrary number of
compulsory terminals, and let T ′ be any subtree of T that
contains all the compulsory terminals. If Tp is the subtree
obtained from T by GPrA, then Tp contains all the compulsory
terminals, and w(Tp) ≥ w(T ′).

Proof: We first prove this theorem for instances with
compulsory terminals. Assume a compulsory terminal r has
been selected to be the root. Since the root will never be
processed, the compulsory terminal r will not be removed
from T . Assume that there is a subtree Ti in T which contains
at least one compulsory terminal other than r and such that
vertex i is the last vertex being processed in this subtree. Let
vertex j be the predecessor of i (j is not in this subtree).
We call Ti a successor of j. It can be seen from Equation (1)
that, after processing all the other vertices in Ti (excluding i),
nw(i) > c(i, j). Thus, this subtree will be kept in T . As a
result, Tp contains all the compulsory terminals. We define
a tree that is a successor of a given vertex j as a Concrete
Tree if it is maximal under the condition that no vertex
can be removed from it by GPrA, i.e., there is no other
successor of j satisfying this condition while contains this tree
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Fig. 2. A subtree rooted at vertex q. CTα|α=1,··· ,x are x Concrete Trees
that are successors to vertex q. Vertex q is connected to vertex mj in Concrete
Tree CTj .

as a subtree. Assume that there is a subtree in T that has a
root at vertex q, and there are x Concrete Trees in this subtree
that are successors to q (see Figure 2). Vertex q is connected
to vertex mj in Concrete Tree CTj . After processing all the
vertices in these Concrete Trees, let nw(mα) ≥ c(q, mα),
∀α = 1, · · · , j, and nw(mα) < c(q, mα), ∀α = j + 1, · · · , x,
where mα is the vertex in Concrete Tree CTα. It is easy to
see that

w(q ∪
∑j

α=1
[(q, mα) ∪ CTα])

≥ w(q ∪
∑x

α=1
zα[(q, mα) ∪ CTα]|zα=0,1) (2)

The Concrete Trees CTα|α=j+1,··· ,x will be removed from
T by GPrA, and the remaining part, q ∪ ∑j

α=1[(q, mα) ∪
CTα], is also a Concrete Tree. Hence, after processing all
the non-root vertices in T , the successor of any vertex will
be a Concrete Tree. If vertex q is the root r, then q ∪∑j

α=1[(q, mα) ∪ CTα] is Tp. It can be seen from Equation
(2) that w(Tp) ≥ w(T ′).

We then prove this theorem for instances with no com-
pulsory terminal. Assume that Topt is a subtree of T , and
w(Topt) ≥ w(T ′). Therefore, adding any vertex to Topt or
removing any vertex from Topt will decrease its net-weight.
After Steps 3-13, there will be one vertex left unprocessed.
There are two possible cases: Case 1: the unprocessed vertex
is not in Topt. Assume that vertex i is the last processed vertex
in Topt. Then, Topt will be obtained as the subtree rooted at
vertex i in the process of Steps 3-13 (suppose that expensive
vertices and edges are deleted in the same way as Steps 16-29),
and nw(i) = w(Topt). Case 2: the unprocessed vertex is in
Topt. Assume that vertex i is that vertex. Consider i as the root
of T . Topt will be the remaining tree after Steps 3-13 (suppose
again that expensive vertices and edges are deleted in the
same way as Steps 16-29), and nw(i) = w(Topt). Therefore,
in any of these two cases, there is a vertex i in Topt for which
nw(i) = w(Topt), and nw(i) ≥ w(T ′). It is easy to see that,
after Steps 3-13, the net-weight of a Concrete Tree rooted at
any vertex j must be larger than or equal to nw(j). If there is a
vertex j for which nw(j) > nw(i), then the net-weight of the
Concrete Tree rooted at j must be larger than w(Topt), which
conflicts with the assumption. Thus, nw(i) ≥ nw(j), ∀j ∈ V .
By setting the vertex with the largest nw value as the root of
T (Step 14), Tp = Topt. �

Clearly, the time complexity of GPrA is O(|V |). Johnson’s
Strong Pruning algorithm has the same time complexity for
trees with compulsory terminals but a larger time complexity

Algorithm 2 The Proposed Tree Growing Algorithm (TGA)

Input: Graph G(V, E, C, w, c), tree T ⊆ G, parameter n
Output: Tree Tg ⊆ G
1: Initialize Tg = T
2: Mark all the vertices in T as unchecked
3: while there is at least one unchecked vertex do
4: for unchecked vertex i do
5: if there is a path candidate rooted at i that has a

non-negative value and a length not larger than n
then

6: Add this path to Tg

7: Mark the newly added vertices as unchecked
8: else
9: Mark i as checked

10: end if
11: end for
12: end while

of O(|V |2) for trees with no compulsory terminal (by trying
all the possible roots). Since there is no compulsory terminal in
most instances for PCSTP (e.g. the instances in [11] and [14]),
it is preferable to apply GPrA to prune suboptimal solutions
to PCSTP.

B. The Proposed Tree Growing Algorithm

GPrA improves suboptimal solutions to PCSTP by pruning
expensive vertices and edges. Here, we propose the Tree
Growing Algorithm (TGA; Algorithm 2) to improve subop-
timal solutions to PCSTP by adding profitable branches.

A path is a tree that only contains two leaves. Given the
initial graph G and a suboptimal solution tree T , we define a
path candidate as a path in G that contains only one vertex in
T . The length of a path candidate is the number of vertices it
contains that are not in T . The value of a path candidate is the
net-weight of this path minus the node weight of the vertex
that is in T . Clearly, path candidates with positive values are
profitable branches that can be added to improve suboptimal
solutions to PCSTP.

If G has |V | vertices and T has |S| vertices, the maximum
number of possible path candidates is

Pmax = |S| × [
(|V | − |S|)!

0!
+

(|V | − |S|)!
1!

+
(|V | − |S|)!

2!
· · ·

+
(|V | − |S|)!

(|V | − |S| − 2)!
+

(|V | − |S|)!
(|V | − |S| − 1)!

] (3)

In the worst case, we need to check every path candidate to
find one with a positive value. However, it is computationally
too expensive to do so in large graphs as the number of possi-
ble path candidates may be quite large. In TGA, a parameter n
is used as the upper bound of the length of possible path can-
didates that are checked, and n ≥ 1. We consistently find and
add all the possible path candidates that have a non-negative
value and a length not larger than n. The time complexity
of TGA is O(|V |n+1). It is easy to see that TGA with a
larger n has a higher probability of improving a suboptimal
solution, but at the cost of a longer running time. We will later
investigate this trade-off through computational trials.



380 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Algorithm 3 The Proposed Post-Processing Procedure (P3)

Input: Graph G(V, E, C, w, c), tree T ⊆ G, parameter n
Output: Tree T ′ ⊆ G
1: Initialize T ′ = T
2: while T ′ can be improved do
3: T ′ = TGA(T ′, G, n)
4: T ′ = MST(T ′, G)
5: T ′ = GPrA(T ′)
6: end while

C. The Proposed Post-Processing Procedure

It is hard to obtain optimal solutions to PCSTP in
large instances. Therefore, post-processing techniques may be
required to improve suboptimal solutions. The MST technique
is the only technique to date that can post-process suboptimal
solutions to PCSTP. It does this by finding the MST that spans
all the vertices in that solution. Here, we combine the MST
technique with the proposed GPrA and TGA together as the
Post-Processing Procedure (P3; Algorithm 3). P3 can improve
not only suboptimal solutions of our heuristic algorithms, but
also those of the state-of-the-art exact algorithms.

Given the initial graph G and a suboptimal solution tree
T , we iteratively improve T until T cannot be improved any
more: use TGA to improve T ; find the MST of T ; use GPrA to
prune T . Note that, in the iteration above, the MST technique
can improve the result of TGA, but it cannot improve the
pruning result of GPrA, which is a subtree of an MST. The
following theorem is well-known and proves this.

Theorem 3: Any subtree of an MST is an MST that spans
all the vertices in that subtree.

Proof: Let T be an MST in graph G, Ts be a subtree of
T , and Ts be the part of T excluding Ts. Let Tm be an MST
in graph G that spans all the vertices in Ts. If c(Tm) < c(Ts),
then c(Ts ∪ Tm) < c(T ), which conflicts with the assumption
that T is an MST in graph G. Therefore, Ts is an MST in
graph G that spans all the vertices in it. �

The MST can be found using Prim’s algorithm [32], which
has a time complexity of O(|E| + |V |log|V |). Therefore,
the time complexity of P3 is O(|V |n+1), where n ≥ 1 is
the parameter in TGA.

We define the domain of T as a domain that contains all
the subtrees of T . A solution tree is considered as the subtree
of itself. It is easy to see that a solution tree may belong
to different domains, and a domain may belong to another
domain. Using GPrA to prune T is to find the best solution
tree in the domain of T . Using TGA to grow T is to find a
better solution tree in a domain that contains the domain of T .
While finding the MST of T is to find a better solution tree
in a different domain which may or may not share common
trees with the domain of T . The process of P3 is illustrated
in Figure 3.

Clearly, P3 can be applied to instances with an arbitrary
number of compulsory terminals. Note that, since the classical
Steiner tree problem in graphs is a special case of PCSTP,
P3 can also be used to post-process suboptimal solutions
to it. However, since all the node weights are zero in the

Fig. 3. The illustration of the process of P3. Each circle represents a domain.
Each dot represents a solution tree. P3 improves the solution from T1 to T5.

Algorithm 4 The Proposed MSTG Algorithm

Input: Graph G(V, E, C, w, c)
Output: Steiner tree T ⊆ G
1: T = MST(G)
2: T = GPrA(T )

classical Steiner tree problem in graphs, TGA can then be
removed from P3. In this case, the time complexity of P3 is
O(|E| + |V |log|V |). Moreover, it is worth mentioning that
P3 can even be applied to instances with negative node
weights, which widely exist in some applications (e.g. [33]).

V. A FAST HEURISTIC ALGORITHM BASED ON THE

PROPOSED POST-PROCESSING TECHNIQUES

It is challenging to design large and low-cost communica-
tion networks since solving PCSTP in large instances may
take a long time and consume a lot of memory. There-
fore, it is preferable to develop heuristic algorithms that
are fast and consume little memory to meet this challenge.
In this section, we propose a quasilinear time heuristic
algorithm without approximation guarantee (Algorithm 4).
It is faster and consumes less memory than other
algorithms.

In this algorithm, we first find the MST of the input graph,
then we use GPrA to prune that MST to obtain a feasible
solution. We refer to this algorithm as the MSTG algorithm
(MST + GPrA). The smallest time complexity to find MST is
O(|E| + |V |log|V |) [32], while the time complexity of GPrA
is O(|V |). Therefore, the MSTG algorithm has a quasilinear
time complexity of O(|E| + |V |log|V |). To our knowledge,
it is the only quasilinear time heuristic algorithm for PCSTP to
date. There is no approximation guarantee for it (the rigorous
proof is provided in the supplement). Nevertheless, it may still
be preferable to apply the MSTG algorithm in some cases
since

• it has advantages over the other algorithms in
time or computational resource sensitive scenarios as it
is faster and consumes less memory.
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• it can solve extremely large instances that the other
algorithms are too slow to solve.

• it can find reasonably high-quality solutions in practice
(we will later show this through computational trials).

VI. THE PROPOSED FAST IMPLEMENTATION OF

GOEMANS-WILLIAMSON ALGORITHMS

Our MSTG algorithm above is an extremely fast heuristic
algorithm without approximation guarantee. However, in some
cases, it may be preferable to apply slower heuristic algorithms
with approximation guarantee to design large and low-cost
communication networks. The improved GW algorithms are
the state-of-the-art polynomial time heuristic algorithms with
approximation guarantee. Their improvements can be divided
into two groups: one is to improve the approximation ratio,
the other one is to accelerate the optimization process. The
improvements with better approximation ratios help us to
understand PCSTP in a different way. Nevertheless, these algo-
rithms may not be fast enough in large instances. Moreover,
these algorithms may not be able to find high-quality solutions
in practice, even though they can guarantee the absence of low-
quality solutions. In this section, we focus on the latter group
of improvements. We propose an improved fast implementa-
tion of the unrooted GW algorithm, and a fast implementation
of the rooted GW algorithm. Ultimately, we analyze the solu-
tion certainty of GW approximation scheme for the first time.

A. The Improved Fast Implementation of the Unrooted
Goemans-Williamson Algorithm

A lot of work has been done to accelerate GW algorithms
[34]. Based on the “dynamic edge splitting” idea proposed by
Cole et al. [27] in 2001, Hegde et al. [11] recently proposed a
fast implementation of the unrooted GW algorithm. We refer to
this algorithm as the FGW algorithm. It is currently the fastest
heuristic algorithm for PCSTP, and it has a tight approximation
guarantee of 2. Here, we use GPrA to improve its solution
while maintaining its speed, and the resulting algorithm is
referred to as the FGW′ algorithm (Algorithm 5).

There are two phases in the FGW′ algorithm: GW-growth
and GW-pruning. In the GW-growth phase, we split each edge
(i, j) into two edge parts ep(i, j) and ep(j, i) corresponding
to the endpoints i and j (Step 2). The edge splitting method
is not clear in Hegde’s FGW algorithm in that it has not
been specified how the edge is split. In our FGW′ algorithm,
we define the edge splitting ratio s (s ≥ 1) as follows.

slack{ep(i, j)} =

{
c(i, j)/s, i < j

(s − 1)c(i, j)/s, i > j
(4)

The two edge parts ep(i, j) and ep(j, i) share the slack (or
cost) of edge (i, j) at the ratio of 1 : (s − 1). We will later
discuss the influence of s on the final solution.

The total number of edge parts is 2|E|, and the number
of edge parts associated with each vertex equals the degree of
this vertex. An edge part is active when the vertex it associates
with is in an active cluster, otherwise the edge part is inactive.
Initially, we set each vertex as a cluster, and the slack of
each cluster equals its node weight (compulsory terminals

Algorithm 5 The Proposed FGW′ Algorithm

Input: Graph G(V, E, C, w, c), parameter s
Output: Steiner tree T ⊆ G
1: Initialize T = ∅, the global time tg
2: Split edges into edge parts using Equation (4)
3: Initialize cluster and edge events
4: while there are more than one active cluster do
5: Find the closest edge event time te and the edge part

ep1

6: Find the closest cluster event time tc and the cluster cl
7: if te ≤ tc then
8: Update tg to te
9: Identify the corresponding edge part ep2 to ep1

10: if ep1 and ep2 are in the same cluster then
11: Continue
12: else
13: Calculate r
14: if r > μ then (μ is a small value close to 0)
15: Update the event time of ep1 and ep2

16: else
17: Add the corresponding edge to T
18: Merge the two clusters and their edge parts
19: end if
20: end if
21: else
22: Update tg to tc
23: Deactivate cl
24: end if
25: end while
26: Remove edges not in the last active cluster from T
27: T = GPrA(T )

have infinite node weights). All the clusters with a positive
slack are active.

There are two types of events, the edge event and the cluster
event. The initial slacks of all the active clusters and edge
parts are considered as their event time (Step 3). We maintain
a global time value tg . As tg increases, the slacks of active
edge parts and clusters decrease. At any time, the remaining
slack of an active cluster is the gap between its event time
and tg; the remaining slack of an inactive cluster is 0; the
remaining slack of an active edge part is the gap between its
event time and tg; the remaining slack of an inactive edge part
is the gap between its event time and the deactivation time of
its cluster.

The edge and cluster events are triggered in the order of
their event time. In the cluster event, we simply deactivate
the responsible cluster (Step 23). In the edge event, the slack
of the responsible edge part is 0 (e.g. slack{ep(i, j)} = 0).
However, the total slack of the responsible edge may not be
0 yet (e.g. slack{ep(i, j)} + slack{ep(j, i)} > 0). Assume
that edge part ep(i, j) is the responsible edge part for an edge
event. Let r be the slack of edge part ep(j, i). If r = 0,
then we merge the two clusters connected by edge (i, j) and
their edge parts (Steps 17-18; to maintain the speed, even the
edge parts between these two clusters are being merged). The
slack of the new cluster equals the sum of slacks of the two
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merged clusters. Suppose the slack of the new cluster is sl,
we set the event time of the new cluster to be tg + sl. Note
that, an inactive cluster may be merged into an active cluster
in an edge event. In that case, we need to increase the event
time of edge parts in the inactive cluster by the gap between
tg and its deactivation time.

If r > 0, then we distinguish two cases to update the event
time of these two edge parts (Step 15):

Case 1: The cluster containing edge part ep(j, i) is active.
Since we expect the slacks of these two edge parts (ep(i, j)
and ep(j, i)) to become 0 at the same time to trigger a merge
event, we split r, and update the event time of ep(i, j) and
ep(j, i) to tg + r/2.

Case 2: The cluster containing edge part ep(j, i) is inactive.
We assume that the cluster containing edge part ep(j, i) stays
inactive until a merge event is triggered by edge (i, j). Then,
for the same reason, we update the event time of ep(i, j) to
tg + r, and the event time of ep(j, i) to the deactivation time
of its cluster.

Crucially, we update the event time of these two edge parts
in the above way so that the two corresponding clusters would
be merged in the next event on edge (i, j), assuming both
clusters maintain their current activity status. If one of the
two clusters changes its activity status, this will not hold.
An extreme situation is that both clusters were active and the
cluster containing edge part ep(j, i) becomes inactive since.
As a result, the next event on edge (i, j) will still have
r > 0, and we need to split the slack r again. In the worst
case, the slack splitting case may keep happening endlessly.
However, if we specify a precision value d, which means
that the slack on an edge can be split for at most d times,
then there are at most O(d) events can be triggered on each
edge. Notably, the value d is only a theoretical safeguard to
maintain the speed. Practically speaking, there are only two
events that can be triggered on each edge in most cases. This
phenomenon has been observed in both our computational
trials and Hegde’s work. In our FGW′ algorithm, a small value
μ is used. μ is close to 0. If r ≤ μ (Step 16), we trigger
the merge event. The functions of d and μ are the same, but
μ is simpler to implement. We end the optimization process
above until there is only one active cluster left (Step 4). The
subtree in this cluster is the raw solution tree we obtained in
the GW-growth phase (Step 26).

In the GW-pruning phase, we prune the raw solution
tree above. The Strong Pruning algorithm is used in the
GW-pruning phase of the FGW algorithm. However,
the Strong Pruning algorithm can only find optimal pruning
solutions in the rooted instances. Our proposed GPrA is
an improvement of the Strong Pruning algorithm. It can
find optimal pruning solutions in both rooted and unrooted
instances (see Theorem 2). Thus, GPrA is used in the GW-
pruning phase of the FGW′ algorithm (Step 27). The FGW′

algorithm has a polynomial time complexity of O(|E|log|V |)
and an approximation guarantee of 2 (in the worst case,
O(|E|log|V |) is O(|V |2log|V |)). Note that, it only has a
constant approximation guarantee and is not a polynomial
time approximation scheme. Therefore, it does not contradict
the claim made by Arora et al. [29] that a MAX SNP-hard

problem does not have a polynomial time approximation
scheme, unless P = NP. Its solutions satisfy the following
stronger approximation guarantee [11], [35],

c(T ) + 2w(T ) ≤ 2c(Topt) + 2w(Topt) (5)

where T is the solution of the FGW′ algorithm, Topt is the
optimal solution to PCSTP, c(T ) and c(Topt) are the total
edge costs in T and Topt, w(T ) and w(Topt) are the total
node weights not in T or Topt. Given a solution of the FGW′

algorithm, a lower bound can be obtained using Equation (5).
Since large instances that have not been solved to optimality
are used in this paper, it is preferable to use this lower bound
to evaluate the solution quality.

B. The Proposed Fast Implementation of the Rooted
Goemans-Williamson Algorithm

The unrooted GW algorithms are faster than their rooted
versions. However, it may still be preferable to use the rooted
versions in some cases since their solutions are generally
better [16]. The FGW′ algorithm proposed above is a fast
implementation of the unrooted GW algorithm. In this sub-
section, we propose its rooted version, which is named as the
FGW′′ algorithm.

In the FGW′′ algorithm, we iteratively select a vertex to
be the root. The edge splitting technique is still used in the
GW-growth phase, but the cluster containing the root is always
inactive. The GW-growth phase terminates when there is no
active cluster left. Then, in the GW-pruning phase, GPrA is
used to prune the subtree in the root cluster.

In previous work, researchers implement the rooted GW
algorithm in instances with compulsory terminals by select-
ing a compulsory terminal to be the root [16]. However,
we observe that it may be preferable to consider all the
vertices to be the possible roots, not just compulsory terminals.
Consider a triangular graph constructed by vertices i, j, k.
Vertices i and k are non-compulsory vertices, and vertex j is
a compulsory terminal. Suppose w(i) = 3, w(j) = 20, w(k) =
20, c(i, j) = 6, c(i, k) = 10, c(j, k) = 11. Select compulsory
terminal j as the root, then the solution is {e(i, j), e(i, k)}.
However, we can obtain the optimal solution {e(j, k)} by
selecting the non-compulsory vertex i as the root (the raw
solution {e(i, j), e(j, k)} is obtained in the GW-growth phase,
and edge {e(i, j)} is pruned in the GW-pruning phase). Thus,
even in instances with compulsory terminals, we may prefer
to consider every vertex as the possible root. Therefore, the
FGW′′ algorithm has a time complexity of O(|E||V |log|V |),
and an approximation guarantee of 2 − 1/(|V | − 1).

The FGW′′ algorithm can find better solutions than the
FGW′ algorithm in many cases [16]. However, it is currently
too slow to apply the FGW′′ algorithm in large instances.
For example, our computational trials show that the FGW′

algorithm needs around 40 seconds to find a feasible solution
in a large instance with 1 million vertices and 10 million edges.
Thus, the FGW′′ algorithm may need half a million minutes to
solve the same instance, which is obviously impractical. Since
we focus on designing large and low-cost communication
networks, the FGW′′ algorithm will not be implemented in
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Fig. 4. Applying the Goemans-Williamson approximation scheme to solve
a triangular instance composing of three non-compulsory vertices i, j, k.
The node weights and edge costs are: w(i) = 2, w(j) = 9, w(k) = 7,
c(i, j) = c(i, k) = 5, c(j, k) = 6. In Stage 1, all the vertices are active
(in blue color); in Stage 2, i runs out of slack and becomes inactive (in
green color); in the ideal Stage 3, all the three edges run out of slack at the
same time; in the real Stage 3, unavoidable computational rounding errors (δ)
exist in the slacks of three edges; in the first scenario of Stage 4 where the
edge events are processed on (i, j) and (i, k), the solution is {j} (in orange
color; (i, j) and (i, k) are first included but later pruned); while in the second
scenario of Stage 4 where the edge event is processed on (j, k), the solution
is {(j, k)}.

this paper. However, it may be preferable to use the FGW′′

algorithm in small instances in some cases. Moreover, the opti-
mization process (to try multiple possible roots) of the FGW′′

algorithm suits parallel-computing perfectly. Since machines
with more and more computing cores are being developed,
a parallel FGW′′ algorithm could be applied to design large
and low-cost communication networks in the future.

C. The Solution Certainty of Goemans-Williamson
Approximation Scheme

The solution certainty of GW approximation scheme has
never been discussed before. Using a particular GW algo-
rithm and a particular implementation method, we always get
the same solution for the same instance. In this subsection,
we further explain why different solutions can be produced
by the same GW algorithm for the same instance when it is
implemented differently.

In the GW approximation scheme, cluster or edge events
are triggered in the GW-growth phase. The condition where
multiple events are triggered simultaneously occurs quite
often, and different orders to process these events may induce
different solutions. For example, in Figure 4, three edge events
are triggered at the same time; if we process the edge events
on (i, j) and (i, k) first, then {j} is obtained; while if we
process the edge event on (j, k) first, then {(j, k)} is obtained.
Therefore, we have the following theorem.

Theorem 4: The Goemans-Williamson approximation
scheme can produce different solutions for the same

Fig. 5. Different solutions for the handsd01 instance.

instance by processing simultaneously triggered events in
different orders.

Our FGW′ algorithm is an improvement of the FGW
algorithm. Suppose these two algorithms are implemented on
the same instance, and the triggered events are sequenced
in the same way, then the outcomes of their GW-growth
phase will be the same. However, since GPrA can guarantee
the pruning optimality in instances with an arbitrary number
of compulsory terminals while the Strong Pruning algorithm
cannot, the GW-pruning outcome of our FGW′ algorithm is
always better than or equal to that of the FGW algorithm.
Therefore, we have the following corollary.

Corollary 5: When the triggered events are sequenced in
the same way, the solution of our FGW′ algorithm always
dominates that of the FGW algorithm.

In the fast implementation of GW approximation scheme,
the cluster and edge events are stored in priority queues.
Thus, it is impossible to manipulate the sequence of triggered
events since the time complexity would be ruined. In this
paper, we give our own code for the FGW′ algorithm, and the
triggered events are sequenced differently from those in the
FGW algorithm in Hegde’s paper [11]. As a result, although
our FGW′ algorithm almost always produces better solutions,
the solutions of the FGW algorithm in Hegde’s paper are
better than those of our FGW′ algorithm in a few benchmark
instances. However, we consider this as acceptable since the
solutions of our FGW′ algorithm are still better than theirs in
the large majority of benchmark instances. Moreover, in this
paper, we also give our own code for the FGW algorithm,
and the triggered events are sequenced in the same way with
those in our FGW′ algorithm. Consequently, the solutions of
our FGW′ algorithm dominate those of the FGW algorithm
in all the benchmark instances, which verifies the corollary
above.

Furthermore, it must be mentioned that the computational
rounding errors in practice may induce different solutions by
changing the sequence of simultaneously triggered events.
For example, Equation (4) is used to split edges in the
FGW′ algorithm, and small computational rounding errors
may be produced in this process. Let us consider the triangular
instance in Figure 4. In the real Stage 3, suppose the total
slacks on the edges are respectively 0 + δ(i, j), 0 + δ(i, k),
0 + δ(j, k), where δ is the error of the slack on each edge.
If δ(i, j) = min{δ(i, j), δ(i, k), δ(j, k)}, then we will process
the event on edge (i, j) first. Different values of s in Equa-
tion (4) may induce different computational rounding errors,
and then induce different solutions. For example, in Figure 5,
we implement the FGW′ algorithm with random values of s
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Fig. 6. s = 2 induces the least number of triggered events.

multiple times, and dozens of different solutions are obtained.
Clearly, the computational rounding errors induced by differ-
ent values of s are unavoidable in practice. Thus, we have the
following conclusion.

Conclusion 1: The FGW′ algorithm with different values of
s may produce different solutions for the same instance.

Notably, similar issues widely exist for many other algo-
rithms in practice. For example, Dijkstra’s algorithm [36] is
widely used to find the shortest path in a graph. There may
be multiple shortest paths, and the one it finds depends on
the specific codes. Consequently, the algorithms built on Dijk-
stra’s algorithm may produce different solutions for the same
instance. On the other hand, all the solutions produced by the
FGW′ algorithm satisfy the strong approximation guarantee of
Equation (5). It is impractical to predict that which value of s
induces the best solution since it requires the knowledge of the
induced computational rounding errors and a detailed analysis
of the specific instance. However, we observe that the different
solutions induced by different values of s have similar qualities
in practice: the net-cost of the worst solution is at most 0.43%
larger than that of the best one when implementing the FGW′

algorithm with 100 random values of s for each of the well-
known Hand instances (the 95% Confidence Intervals of this
percentage is [0.09%, 0.14%]).

Moreover, we observe that different values of s can also
change the number of triggered events in the FGW′ algorithm.
For example, in Figure 6, suppose the edge is connected to
two active clusters; if s = 2, which means that we evenly
split the edge initially, then the slacks of these two edge
parts will run out at the same time, and the first event on
this edge will directly induce the merge of two adjacent
clusters; however, if we unevenly split the edge initially, then
the slacks of these two edge parts will run out at different
times, and a second event on this edge is required before
the merge of two adjacent clusters. Therefore, s = 2 induces
the least number of triggered events in the FGW′ algorithm.
This has also been verified in our computational trials. In this
paper, we try 100 random values of s for each of the well-
known Hand instance, and then select the best one to obtain
dominating solutions to those in Hegde’s paper (note that,
the edge splitting method is not clear in Hegde’s paper), while
for the newly generated larger instances, since it is impractical
to predict the solutions induced by different values of s and
also too slow to implement a large number of different values
of s, we set s = 2 to minimize the number of triggered events.

VII. EXPERIMENTS

It is challenging to design large and low-cost communica-
tion networks. Our heuristic algorithms and post-processing

Fig. 7. The trade-off of n in the post-process. (a) The approximation ratio.
(b) The running time.

techniques can help meet this challenge. In this section,
we indicate the competitiveness of our FGW′ and MSTG
algorithms by comparing them with the state-of-the-art algo-
rithms in the largest existing benchmark instances and some
newly generated instances that are even larger. Moreover,
we apply our P3 to update the best-known solution for a
notoriously difficult benchmark instance to show that it can
improve near-optimal solutions to PCSTP. Remarkably, even
though large instances with millions of vertices are used, all
the computational trials are conducted on a commonly used
personal computer from 2016 (Intel Core i7-4790 CPU with
3.60GHz), and the consumed memory in the largest instance is
less than 8 GB. The reported running times are averaged over
10 trials for each instance. The time spent on inputting and
outputting data is excluded from the reported running time,
but the time spent on all the other processes is included. The
codes and our later generated M instances are available at [37].

A. The Trade-Off of n in the Tree Growing
Algorithm (TGA)

The time complexity of TGA is O(|V |n+1), where n is
the upper bound of the lengths of possible path candidates
that are checked. Clearly, TGA with a larger n has a higher
probability of improving a suboptimal solution, but at the cost
of a longer running time. Here, we investigate this trade-off
through computational trials.

First, we implement P3 with different values of n to post-
process suboptimal solutions of the MSTG algorithm in two
benchmark instances: handsd04 and handsi04. The improve-
ments are shown in Figure 7a, where the approximation
ratios are ratios of the post-processed solutions to the optimal
ones [23]. It can be seen from handsi04 that a larger n induces
a larger improvement on the suboptimal solution. Nevertheless,
this is not always true. For example, in handsd04, the post-
processed solution when n = 2 has a larger approximation
ratio than that when n = 1. The reason is that, when n is
large, a long branch may be added to take up the opportunity
of adding a better short branch. Since it is computationally too
expensive to compare the candidate branches before adding
them, the scenario above may be unavoidable. Nonetheless,
it is still preferable to set n large to give TGA a greater chance
to improve suboptimal solutions.

On the other hand, a large n makes TGA slow. We imple-
ment P3 with different values of n to post-process suboptimal
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Fig. 8. The computational trials in the existing Hand instances and the newly generated M instances. (a) handb instances (|V | ≈ 169, 800, |E| ≈ 338, 551).
(b) hands instances (|V | ≈ 42, 500, |E| ≈ 84, 475). (c) M_A instances (|V | = 1, 000, 000, |E| = 10, 000, 000). (d) M_B instances (|V | = 1, 000, 000,
|E| = 10, 000, 000).

solutions of the MSTG algorithm in two benchmark instances:
handbd01 (|V | = 169, 800, |E| = 338, 551) and M1A (|V | =
1, 000, 000, |E| = 10, 000, 000). Clearly, the running time of
P3 grows quickly as n increases. Therefore, even though a
larger n has a greater chance to improve suboptimal solutions,
it is not recommended to set n too large to make P3 slow.
In the following computational trials, we set n = 2 in the
Hand instances and n = 1 in the M instances to make such a
trade-off between speed and solution quality.

B. Application to Benchmark Instances

Our FGW′ and MSTG algorithm can find fast high-quality
solutions to PCSTP in large instances. Here, we indicate their
competitiveness by comparing them with the state-of-the-art
algorithms for both the largest existing benchmark instances
and some newly generated instances that are even larger.
We also use P3 to post-process their solutions.

The Hand instances generated by Hegde et al. [11] in 2014
are currently the largest benchmark instances for PCSTP,
and they are available at [22]. The largest Hand instance
has 169,800 vertices and 338,551 edges. Some communica-
tion networks may be much larger than this. For example,
the telecommunication network in a large city like Melbourne
may need to cover millions of buildings, and a local 5G
wireless network may connect millions of mobile devices.
Thus, we generate some new larger instances, the M instances,
to reflect such a large scale. There are 1 million vertices and
10 million edges in each M instance. In each of M1A to
M20A, all the vertices have positive node weights, while in
each of M1B to M20B, only 10,000 vertices have positive

node weights, and the node weights of the other vertices are 0.
We apply both the Hand and M instances here.

Since Hegde’s FGW algorithm [11] is the state-of-the-
art heuristic algorithm for PCSTP. We compare it with our
FGW′ and MSTG algorithm in the same settings. Johnson’s
Strong Pruning algorithm [16] is used in the pruning phase
of Hegde’s FGW algorithm. In instances with no compulsory
terminal, like our applied instances and most other ones for
PCSTP [11], [14], roots need to be randomly selected in the
Strong Pruning algorithm to obtain good pruning results [16].
We provide two options here: randomly select 1 root to prune
once; and randomly select 100 roots to prune 100 times.
The resulting FGW algorithms are referred to as FGW(OPT1)
and FGW(OPT2). Moreover, DA_BB [23] is the state-of-the-
art exact algorithm for PCSTP. Thus, we also compare it
with our FGW′ and MSTG algorithm in the Hand instances.
However, since the state-of-the-art exact algorithms are not our
focus; they cannot solve large instances that our algorithms are
designed to solve; and most computers, including ours, are not
powerful enough to implement them due to the small RAM
size, we do not implement DA_BB in this paper, but only
compare its computational results in [23], where a much more
powerful computer is used.

The detailed computational results are shown in the supple-
ment, while their statistic evaluations are shown in Figure 8,
where three evaluation standards are used: 1) the average
approximation ratio to the optimal solution or the best-known
lower bound to date [23]; 2) the average memory consumption;
3) the average speed. Clearly, DA_BB has the highest solution
quality, but it consumes a lot more memories and are much



386 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

slower than the other heuristic algorithms (its running times
are reported in [23], where a much more powerful computer is
used; its 16 GB memory consumption in the handb instances
is also reported in [23], while its 4 GB memory consumption
in the hands instances is estimated based on the CPLEX
memory estimation guideline [38]). The other state-of-the-art
exact algorithms, such as Staynerd [20], have similar demands
on computational resources with DA_BB. Since the RAM
sizes of most machines in the market are currently below 16
GB, it is reasonable to say that the Hand instances are the
largest instances that the state-of-the-art exact algorithms can
solve at present. Hence, they may not be able to design larger
communication networks. For example, it can be estimated
from Figure 8 that DA_BB may consume hundreds of GBs
memory to solve the M instances, which is impractical in
most cases.

On the other hand, FGW(OPT1) has a similar speed with
our FGW′ algorithm, while FGW(OPT2) is much slower than
the two algorithms above. The reason is that only one random
root is selected in FGW(OPT1) and our FGW′ algorithm can
directly find the optimal root, but FGW(OPT2) need to select
100 random roots. Consequently, the raw solution tree we
obtained in the GW-growth phase only need to be pruned
once in FGW(OPT1) and our FGW′ algorithm, but it needs
to be pruned 100 times in FGW(OPT2). Even so, since there
may be hundreds of thousands of root candidates and it is
thus impractical to select all of them, our FGW′ algorithm
has a dominating solution quality over both FGW(OPT1) and
FGW(OPT2). Furthermore, it may be worth mentioning that,
since the GW approximation scheme can obtain different solu-
tions for the same instance (see Section VI-C), the solutions
of the FGW algorithm in Hegde’s paper [11] are better than
those of FGW(OPT1) and FGW(OPT2) in some instances.
Nevertheless, by trying more root candidates, FGW(OPT1)
and FGW(OPT2) can obtain the same solutions of our FGW′

algorithm, which dominate those of the FGW algorithm in
Hegde’s paper. In respect of our MSTG algorithm, even though
there is no approximation guarantee for it, its approximation
ratios are small in these instances, which means that it can
find reasonably high-quality solutions in practice. Moreover,
it is quasilinear and thus is much faster than the other GW
algorithms in the M instances, and its consumed memory is
also smaller.

P3 has improved the FGW′ and MSTG solutions in the
large majority of these instances, and its running time is
small and neglect-able. We have also shown the improvements
on approximation ratios in Figure 9. Note that, since the
speed of FGW(OPT1) is at the same level with FGW′ + P3,
we show the improvements from FGW(OPT1) to our FGW′

and P3(FGW′), but not from FGW(OPT2), which is much
slower. Since the solutions of these GW algorithms are very
close to the optimal ones, the improvements on them are small
by percentage. Nevertheless, the costs for these improvements,
i.e., the memory consumption and running time of FGW′

and P3, are also small. Moreover, as large communication
networks may be expensive in practice, a small percentage
of improvement may still mean that a high cost is saved.
For example, in large telecommunication networks that worth

Fig. 9. The improvements on approximation ratios. IMP 1 is the improvement
from FGW(OPT1) to FGW′; IMP2 is that from FGW(OPT1) to P3(FGW′);
IMP3 is that from FGW′ to P3(FGW′); and IMP4 is that from MSTG to
P3(MSTG).

Fig. 10. Rating of the state-of-the-art algorithms.

billions of dollars (e.g. [39]), a 0.1% improvement can save
millions of dollars. Furthermore, in larger instances where only
the MSTG algorithm is fast enough to be implemented, P3 can
improve its solutions significantly.

Ultimately, we rate these algorithms in Figure 10 to clearly
show the advantages of our FGW′ and MSTG algorithms
over the state-of-the-art algorithms in designing large and low-
cost communication networks. Furthermore, we summarize the
following conclusions from these computational trials:

• the state-of-the-art exact algorithms may not be able to
design large and low-cost communication networks due
to their low speed and high demand on computational
resources.

• our FGW′ algorithm produces better solutions than the
state-of-the-art heuristic algorithm: FGW, while keeping a
high speed and a low demand on computational resources
(FGW′ keeps the time complexity of O(|E|log|V |), while
FGW must increase it to O(|E|log|V | + |V |2), by trying
all the pruning roots, to find these better solutions).

• our MSTG algorithm has a higher speed and a lower
demand on computational resources than the other algo-
rithms, and its solutions have small approximation ratios
in practice. Therefore, it has advantages over the other
algorithms in time or computational resource sensitive
scenarios, and it can solve extremely large instances that
the other algorithms are too slow to solve.

• our P3 can improve near-optimal solutions to PCSTP (the
best-known solution for a Hand instance is updated later
by P3).
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TABLE I

OUR IMPROVED SOLUTIONS OF STAYNERD AND DA_BB

C. Post-Process Suboptimal Solutions of the State-of-the-Art
Exact Algorithms

The state-of-the-art exact algorithms may only be able to
find suboptimal solutions in large instances. Staynerd [20]
and DA_BB [23] are the state-of-the-art exact algorithms
for PCSTP. Here, we show that P3 can also improve their
suboptimal solutions in the Hand instances. The numbers
of solutions of Staynerd and DA_BB that have not been
proven to be optimal in the Hand instances are respectively
21 and 3. We implement P3 to improve these solutions (they
are provided by Ivana Ljubić and Martin Luipersbeck, who
proposed Staynerd and DA_BB with others). The improved
solutions are shown in Table I. It can been seen that P3 has
improved 8 suboptimal solutions of Staynerd and 1 suboptimal
solution of DA_BB. The running time of P3 in these instances
is around 0.25s. Therefore, it is reasonable to conclude that
P3 can improve not only suboptimal solutions of our heuristic
algorithms, but also those of the state-of-the-art exact algo-
rithms. Hence, it may be preferable to combine P3 with the
state-of-the-art exact algorithms together to solve PCSTP in
some cases. Note that, the Staynerd solution of handbi13 we
received from Ivana Ljubić and Martin Luipersbeck is better
than that in their previously published paper [20]. However,
P3 can still improve it. The improved solution (4.2676) is the
new best-known solution for this instance.

VIII. CONCLUSION

It is challenging to design large and low-cost commu-
nication networks. In this paper, we formulate this chal-
lenge as the Prize-Collecting Steiner Tree Problem (PCSTP).
We first propose some effective post-processing techniques to
improve suboptimal solutions to PCSTP. Then, based on these
techniques, we propose two heuristic algorithms for PCSTP.
We indicate the competitiveness of our heuristic algorithms
over the state-of-the-art ones in both the largest existing
benchmark instances and some newly generated instances
that are even larger. Moreover, we apply our post-processing
techniques to update the best-known solution for a notoriously
difficult benchmark instance to show that they can improve
near-optimal solutions to PCSTP. In summary, we demon-
strate that our heuristic algorithms and post-processing tech-
niques can help design large and low-cost communication
networks.
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The Supplement for “The fast heuristic algorithms
and post-processing techniques to design large and

low-cost communication networks”
Yahui Sun, Marcus Brazil, Doreen Thomas, Senior Member, IEEE, and Saman Halgamuge, Fellow, IEEE

This supplement contains the rigorous proof for the ap-
proximation guarantee of our MSTG algorithm, and the de-
tailed computational results in the largest existing benchmark
instances and some newly generated instances that are even
larger.

I. THE APPROXIMATION GUARANTEE OF THE MSTG
ALGORITHM

We prove that there is no approximation guarantee for the
MSTG algorithm as follows.

Theorem 1. There is no approximation guarantee for the
MSTG algorithm.

Proof. Consider the example instance in Figure 1. The MST
of this graph is the tree constructed by all the black edges.
Since the node weight of each red vertex is ∞, no edge
can be removed by GPrA from this MST. Thus, the solu-
tion of the MSTG algorithm is this MST. Use TMSTG to
signify this solution, and c(TMSTG) = mny. Use Topt to
signify the optimal solution. Suppose α(m − 1) < mn, then
Topt is the tree constructed by all the red edges. Therefore,
c(Topt) = (m− 1)x. We have the approximation ratio of the
MSTG algorithm as follows,

lim
n→∞

ratio =
mny

(m− 1)x
>

mn

α(m− 1)
=∞ (1)

Thus, there is no approximation guarantee for the MSTG
algorithm. Note that, it is still true when we replace GPrA
with P3 in the MSTG algorithm.

II. TWO TABLES

We present the detailed computational results of our heuris-
tic algorithms and the state-of-the-art ones in the following
two tables, where |V | is the number of vertices, |E| is
the number of edges, Previous Best is the previous best-
known solution obtained by DA BB [1] (a new best-known
solution is later obtained in our paper), Solu. is the solution
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Figure 1: An instance for PCSTP. The node weight of each
red vertex v1n to vmn is ∞, while that of each black vertex is
0. The cost of each red edge (v1n, v2n) to (v(m−1)n, vmn) is
x, while that of each black edge is y. y < x < αy and α > 1.

obtained by each algorithm, Time is the running time of
each algorithm, P3 Solu. is the post-processed solution for
each algorithm (bold font is used to highlight the improved
solutions), P3 Time is the running time of P3, and GW LB
is the lower bound calculated using Equation (5) in our paper.
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Table I: The computational trials in the existing Hand instances

Instance |V | |E| Previous Best FGW [2] (OPT1) FGW [2] (OPT2) FGW′ MSTG

(DA BB [1]) Solu. Time Solu. Time Solu. Time P3 Solu. P3 Time Solu. Time P3 Solu. P3 Time

handbd01 169800 338551 728.9636 729.7379 0.9242s 729.1135 36.6108s 729.1135 0.9428s 729.1036 0.2458s 730.1109 0.3289s 729.3935 0.2407s

handbd02 169800 338551 296.4965 297.6809 0.2270s 297.6115 23.4267s 297.6115 0.2223s 297.5754 0.3114s 2227.5098 0.3334s 2143.6177 0.2456s

handbd03 169800 338551 135.0706 135.122 1.0693s 135.0822 40.5322s 135.0706 1.1363s 135.0706 0.1232s 135.0973 0.3219s 135.0790 0.2395s

handbd04 169800 338551 1813.9592 1831.115 0.4892s 1831.115 31.7381s 1831.115 0.4867s 1830.7270 0.2896s 3019.4724 0.3193s 2957.8595 0.2418s

handbd05 169800 338551 105.4747 105.5042 1.0446s 105.5003 38.8565s 105.4747 1.0675s 105.4747 0.1234s 105.4992 0.3179s 105.4946 0.2491s

handbd06 169800 338551 1528.7654 1541.5242 0.4737s 1541.225 32.4908s 1541.225 0.5016s 1540.7989 0.2948s 3250.2024 0.3268s 3129.1386 0.2427s

handbd07 169800 338551 77.862 77.8965 1.1763s 77.8959 43.5286s 77.8625 1.1979s 77.8625 0.1237s 77.8879 0.3281s 77.8865 0.2422s

handbd08 169800 338551 1368.1668 1378.5156 0.4604s 1378.2537 29.9428s 1378.2537 0.4403s 1378.1311 0.2944s 3414.5311 0.3257s 3276.3112 0.2529s

handbd09 169800 338551 62.7172 62.7625 1.0605s 62.7337 37.9934s 62.7175 1.0256s 62.7175 0.1262s 62.7403 0.3172s 62.7337 0.2416s

handbd10 169800 338551 1137.4297 1145.8061 0.3885s 1143.9666 28.8286s 1143.9666 0.3896s 1143.8244 0.3190s 3555.8536 0.3243s 3258.9696 0.2511s

handbd11 169800 338551 46.7725 46.7853 1.2141s 46.7853 41.6638s 46.7725 1.2041s 46.7725 0.1234s 46.779 0.3205s 46.779 0.1217s

handbd12 169800 338551 321.2047 321.4016 0.4624s 321.4016 32.0761s 321.4016 0.4804s 321.3986 0.2992s 2663.0152 0.3252s 2656.4811 1.4860s

handbd13 169800 338551 13.1889 13.2327 1.0310s 13.2148 39.3235s 13.2111 1.0106s 13.2111 0.1305s 13.2241 0.3210s 13.2210 0.2395s

handbd14 169800 338551 4379.1042 4433.4783 0.1106s 4379.1857 18.4805s 4379.1857 0.1116s 4379.1857 0.1246s 4428.7641 0.3179s 4379.3222 0.2420s

handbi01 158400 315808 1358.5634 1361.1002 0.9966s 1359.2352 36.6247s 1358.814 0.9456s 1358.8079 0.2394s 1360.1763 0.2978s 1359.9244 0.2380s

handbi02 158400 315808 531.8109 533.3078 0.2013s 533.3078 21.9973s 533.3078 0.1973s 533.3078 0.1428s 4128.3691 0.3059s 4004.8070 0.2356s

handbi03 158400 315808 243.1342 243.2314 1.0698s 243.2314 39.8263s 243.1342 1.0701s 243.1342 0.1207s 243.2072 0.2997s 243.1851 0.2325s

handbi04 158400 315808 3202.1857 3241.4074 0.5057s 3240.0417 30.2661s 3240.0417 0.4610s 3239.7863 0.2695s 5498.7375 0.3010s 5436.0946 0.2313s

handbi05 158400 315808 184.4673 184.5456 1.0612s 184.4876 36.9983s 184.4673 1.0620s 184.4673 0.1183s 184.4973 0.2985s 184.4782 0.2300s

handbi06 158400 315808 2921.5447 2951.3871 0.3950s 2951.0213 27.2265s 2951.0213 0.3797s 2950.7282 0.2711s 5817.5678 0.3014s 5744.2290 0.2322s

handbi07 158400 315808 150.9743 151.0662 0.9616s 151.0132 36.0864s 150.977 0.9531s 150.977 0.1186s 151.0203 0.2978s 151.0184 0.2365s

handbi08 158400 315808 2270.2846 2285.0306 0.3343s 2284.5631 25.4304s 2284.5631 0.3272s 2284.3594 0.2735s 6055.4094 0.3027s 5888.0953 0.2392s

handbi09 158400 315808 107.7688 107.8008 0.9800s 107.7967 38.0417s 107.77 1.0044s 107.77 0.1191s 107.7905 0.3002s 107.7860 0.2320s

handbi10 158400 315808 1874.293 1881.7441 0.2690s 1880.5621 24.4678s 1880.5621 0.2744s 1880.5208 0.2796s 6375.8028 0.3024s 4545.9725 0.2550s

handbi11 158400 315808 68.9447 68.959 1.1458s 68.959 42.5903s 68.9447 1.1929s 68.9447 0.1184s 68.9493 0.3001s 68.9493 0.1186s

handbi12 158400 315808 138.257 138.3566 0.1713s 138.3002 20.1980s 138.3002 0.1714s 138.3002 0.1410s 1202.2414 0.3036s 1202.2414 0.6563s

handbi13 158400 315808 4.2745 4.3333 0.9399s 4.3139 38.3010s 4.3139 0.9455s 4.3139 0.1279s 4.4289 0.3015s 4.4289 0.1161s

handbi14 158400 315808 7881.7687 7881.9025 0.1039s 7881.9025 18.0950s 7881.9025 0.1036s 7881.9025 0.1408s 8029.2983 0.3017s 7881.9582 0.2852s

handsd01 42500 84475 171.6368 171.9393 0.1576s 171.7123 6.4092s 171.6368 0.1562s 171.6368 0.0298s 171.7438 0.0791s 171.6638 0.0548s

handsd02 42500 84475 159.7514 161.2727 0.0557s 161.1133 5.2666s 161.1133 0.0490s 161.1133 0.0327s 580.9579 0.0779s 576.5816 0.0547s

handsd03 42500 84475 31.3063 31.3319 0.1625s 31.328 6.4554s 31.3063 0.1630s 31.3063 0.0300s 31.3215 0.0785s 31.3209 0.0560s

handsd04 42500 84475 491.7332 496.3119 0.0856s 496.3119 5.8644s 496.3119 0.0726s 496.2860 0.0629s 784.0524 0.0797s 780.1176 0.0558s

handsd05 42500 84475 21.9376 21.952 0.1654s 21.952 6.9209s 21.9376 0.1709s 21.9376 0.0283s 21.951 0.0775s 21.9434 0.0539s

handsd06 42500 84475 279.9031 281.026 0.0943s 280.9208 5.9990s 280.9208 0.0725s 280.9206 0.0647s 850.0455 0.0785s 813.0007 0.0574s

handsd07 42500 84475 11.8041 11.8082 0.1974s 11.8082 7.5797s 11.8041 0.2006s 11.8041 0.0286s 11.8065 0.0769s 11.8065 0.0134s

handsd08 42500 84475 143.2377 143.307 0.0414s 143.307 4.6650s 143.307 0.0379s 143.307 0.0357s 913.7864 0.0795s 611.2809 0.0648s

handsd09 42500 84475 3.8187 3.8271 0.1907s 3.8205 7.7641s 3.8187 0.1995s 3.8187 0.0278s 3.8192 0.0780s 3.8192 0.0272s

handsd10 42500 84475 1034.7674 1045.89 0.0260s 1034.7674 4.2425s 1034.7674 0.0257s 1034.7674 0.0290s 1044.0143 0.0774s 1034.8327 0.0552s

handsi01 39600 78704 295.4536 295.8089 0.1431s 295.6686 5.4401s 295.4953 0.1457s 295.4703 0.0428s 295.6767 0.0710s 295.4893 0.0429s

handsi02 39600 78704 125.4294 125.6777 0.0316s 125.5538 3.8797s 125.5538 0.0328s 125.5538 0.0279s 971.3768 0.0720s 824.3563 0.0543s

handsi03 39600 78704 56.1494 56.242 0.2415s 56.2419 7.2809s 56.1494 0.2094s 56.1494 0.0224s 56.2308 0.0704s 56.2304 0.0418s

handsi04 39600 78704 722.5082 729.5874 0.0490s 729.0027 4.2719s 729.0027 0.0514s 728.9148 0.0545s 1353.3911 0.0706s 1344.8666 0.0433s

handsi05 39600 78704 35.0435 35.0598 0.1908s 35.0598 6.3690s 35.0435 0.1856s 35.0435 0.0213s 35.0494 0.0702s 35.0494 0.0213s

handsi06 39600 78704 452.9536 455.8024 0.0456s 454.4759 4.2280s 454.4759 0.0480s 454.4759 0.0284s 1462.0777 0.0708s 1396.0978 0.0444s

handsi07 39600 78704 18.4101 18.4287 0.1663s 18.4287 5.9944s 18.4101 0.1739s 18.4101 0.0215s 18.4176 0.0703s 18.4132 0.0420s

handsi08 39600 78704 229.5299 229.7778 0.0287s 229.6325 3.6339s 229.6325 0.0297s 229.6325 0.0253s 1603.4522 0.0724s 420.9894 0.0607s

handsi09 39600 78704 5.9622 5.9817 0.1627s 5.9627 5.8678s 5.9622 0.1598s 5.9622 0.0218s 5.9819 0.0703s 5.9819 0.0216s

handsi10 39600 78704 1803.6975 1805.629 0.0205s 1805.629 3.3605s 1805.629 0.0215s 1805.4473 0.0500s 1833.9684 0.0777s 1831.6729 0.0443s
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Table II: The computational trials in the newly generated M instances

Instance |V | |E| FGW [2] (OPT1) FGW [2] (OPT2) FGW′ MSTG

Solu. Time Solu. Time Solu. Time GW LB P3 Solu. P3 Time Solu. Time P3 Solu. P3 Time

M1A 1000000 10000000 5481.6409 41.1174s 5481.632 278.9158s 5481.632 41.1802s 5460.6945 5481.2040 2.7353s 5493.5729 5.9965s 5490.3174 3.0465s

M2A 1000000 10000000 5488.2152 35.6940s 5488.2152 239.3660s 5488.2152 36.0353s 5466.5515 5487.8637 2.8222s 5499.5815 6.4923s 5496.7685 3.1177s

M3A 1000000 10000000 5482.2617 45.0729s 5482.244 304.4540s 5482.244 45.3488s 5461.1391 5481.8221 2.8175s 5493.1467 6.7244s 5490.0110 2.9944s

M4A 1000000 10000000 5486.2941 43.5985s 5486.2692 289.2165s 5486.2692 44.0277s 5464.7241 5485.9517 2.9113s 5497.0325 6.6048s 5494.0865 3.0571s

M5A 1000000 10000000 5486.4648 46.7103s 5486.4498 308.3590s 5486.4498 46.8574s 5465.042 5486.0817 3.1080s 5497.1304 6.6118s 5494.4981 3.1362s

M6A 1000000 10000000 5483.5598 41.6654s 5483.5598 277.2854s 5483.5598 41.9960s 5461.4035 5483.2009 3.0440s 5494.292 6.5396s 5491.6260 3.2399s

M7A 1000000 10000000 5483.2707 37.6512s 5483.2707 253.3655s 5483.2707 38.8013s 5461.3939 5482.9075 3.0819s 5493.7591 6.7919s 5490.8884 3.2503s

M8A 1000000 10000000 5488.9262 44.0611s 5488.9202 295.2093s 5488.9202 44.7165s 5466.709 5488.5406 3.2238s 5500.0362 6.8583s 5497.1859 3.3526s

M9A 1000000 10000000 5489.351 43.9632s 5489.3345 288.1966s 5489.3345 45.0848s 5467.2073 5488.9733 3.1806s 5500.1045 6.7159s 5497.4085 3.4248s

M10A 1000000 10000000 5483.7157 45.2397s 5483.7009 301.1237s 5483.7009 45.9673s 5461.8778 5483.3028 3.2424s 5493.9648 6.0955s 5491.2744 3.4998s

M11A 1000000 10000000 5484.0646 45.7019s 5484.0537 304.1795s 5484.0537 46.7220s 5462.7545 5483.6038 3.5856s 5494.972 6.4800s 5492.1123 3.5348s

M12A 1000000 10000000 5485.794 47.3249s 5485.794 317.2440s 5485.794 48.0205s 5464.3387 5485.3847 3.4342s 5497.0247 6.4409s 5493.6634 3.7350s

M13A 1000000 10000000 5481.4588 47.3713s 5481.4431 317.3814s 5481.4431 48.4331s 5459.5761 5481.0153 3.5405s 5492.5614 6.6036s 5489.9386 3.9404s

M14A 1000000 10000000 5481.7737 45.5650s 5481.7078 304.6331s 5481.7078 47.8858s 5460.3079 5481.4068 3.4022s 5492.144 6.5634s 5489.0575 3.6227s

M15A 1000000 10000000 5484.197 47.4944s 5484.1881 318.1793s 5484.1881 47.7006s 5462.8524 5483.7696 3.5510s 5494.7691 6.2155s 5492.5581 3.8557s

M16A 1000000 10000000 5487.2783 47.5215s 5487.2783 315.4937s 5487.2783 48.1742s 5465.2008 5486.8723 3.6924s 5497.5028 6.4870s 5494.3715 3.8062s

M17A 1000000 10000000 5483.7691 42.6993s 5483.7476 281.9618s 5483.7476 42.9462s 5461.9474 5483.3123 3.6478s 5494.721 6.2138s 5492.2295 3.8779s

M18A 1000000 10000000 5486.6205 43.7577s 5486.6117 288.7708s 5486.6117 44.7528s 5465.2081 5486.3287 3.6500s 5498.0079 6.7424s 5494.6275 3.6404s

M19A 1000000 10000000 5483.9776 45.8445s 5483.9695 307.5425s 5483.9695 46.4310s 5462.1784 5483.5960 3.4813s 5495.2559 6.8354s 5492.3760 3.6918s

M20A 1000000 10000000 5487.5845 46.2689s 5487.5651 308.2115s 5487.5651 46.8482s 5465.6964 5487.1075 3.5149s 5498.6258 6.7236s 5495.8071 3.8611s

M1B 1000000 10000000 66.2021 32.3069s 66.1832 247.5397s 66.1832 32.4441s 53.3145 66.0466 2.8262s 92.4365 6.3559s 79.3268 3.1068s

M2B 1000000 10000000 66.0324 19.8363s 66.0174 168.0830s 66.0174 19.9129s 52.5769 65.8882 2.7637s 94.1092 6.7074s 80.0447 3.1112s

M3B 1000000 10000000 65.7169 30.4805s 65.7068 236.2986s 65.7068 30.9065s 52.816 65.5986 2.8050s 92.9147 7.0690s 82.2103 3.2348s

M4B 1000000 10000000 65.4162 26.0066s 65.394 202.1854s 65.394 26.2628s 52.3969 65.2567 2.7958s 93.8008 6.8425s 81.0745 3.1842s

M5B 1000000 10000000 65.6691 28.3675s 65.6691 219.7546s 65.6691 28.6480s 52.3289 65.5881 2.7750s 93.0645 6.3484s 80.7955 3.0979s

M6B 1000000 10000000 65.847 31.1829s 65.8336 237.4612s 65.8336 31.3760s 52.6452 65.7684 2.8360s 92.6384 6.9973s 79.4922 3.1287s

M7B 1000000 10000000 65.5548 29.2183s 65.5447 226.8594s 65.5447 29.4760s 52.5285 65.3970 2.7788s 92.0847 7.0038s 79.7433 3.1347s

M8B 1000000 10000000 66.1979 28.1588s 66.1815 217.9342s 66.1815 28.1823s 52.9914 66.0255 2.8414s 92.4475 7.0138s 78.1951 2.9598s

M9B 1000000 10000000 65.429 31.5468s 65.4242 241.1995s 65.4242 32.2525s 52.2148 65.3305 2.7388s 92.4493 7.2335s 79.6682 3.2323s

M10B 1000000 10000000 65.5545 32.6414s 65.5444 246.0274s 65.5444 31.9424s 52.5864 65.4162 2.8588s 93.9597 7.0986s 82.2695 3.2284s

M11B 1000000 10000000 65.5385 26.3979s 65.5277 207.4508s 65.5277 26.1448s 52.5764 65.3598 2.8288s 92.2234 7.1162s 78.3228 3.0511s

M12B 1000000 10000000 66.1164 30.8797s 66.1085 237.9132s 66.1085 30.8732s 52.8355 65.9770 2.8050s 93.8467 7.0847s 78.6274 3.0463s

M13B 1000000 10000000 65.7901 30.6637s 65.7772 232.8243s 65.7772 30.5422s 52.5653 65.6787 2.7308s 93.9122 7.1522s 81.4700 3.1073s

M14B 1000000 10000000 65.6827 30.3201s 65.6772 230.7312s 65.6772 29.9101s 52.3993 65.6211 2.8106s 93.316 6.4010s 79.6478 2.9961s

M15B 1000000 10000000 65.4326 29.3813s 65.4123 227.3946s 65.4123 29.8681s 52.5718 65.3125 2.7157s 92.1817 7.2176s 79.5161 3.0208s

M16B 1000000 10000000 66.0073 30.9838s 65.9965 237.9746s 65.9965 30.9989s 52.4984 65.9059 2.7464s 92.6824 7.1303s 81.2880 3.1640s

M17B 1000000 10000000 65.7726 28.6853s 65.7602 223.1243s 65.7602 28.6653s 52.582 65.6592 2.7328s 94.4974 7.0025s 81.5226 3.1198s

M18B 1000000 10000000 65.3082 28.4717s 65.3016 220.4450s 65.3016 28.8249s 52.3314 65.1425 2.8311s 92.8887 7.1751s 81.3532 3.1336s

M19B 1000000 10000000 65.5194 32.5167s 65.5194 253.1833s 65.5194 32.9705s 52.5215 65.4110 2.7679s 93.1059 6.9005s 82.7996 3.2278s

M20B 1000000 10000000 66.0938 32.8374s 66.0804 255.3113s 66.0804 32.9264s 52.7985 65.9690 2.7642s 92.8594 6.6573s 80.8396 3.1067s


